Advertisement

Comparative Study of Parameter Learning Complexities of Enhanced Bayesian Networks

  • Monidipa DasEmail author
  • Soumya K. Ghosh
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 858)

Abstract

The primary focus of this chapter is to provide a complete view of the computational complexity  in the parameter learning  of the enhanced Bayesian network models used in spatial time series prediction. The analysis is performed from both the perspectives of time and space  requirement. The chapter starts with a description of a common network configuration , specifying the total number of nodes/variables, maximum number of parents for any node in the network, maximum domain size of the variables, total number of spatial locations etc. Later, the parameter learning complexity for each of the BN models are estimated assuming the same configuration of the network. The comparative study at the end of the chapter shows that, even with the extended functionality, the parameter learning complexities in the enhanced BN models do not increase considerably compared to the standard BN model for spatial time series prediction.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press (2009)Google Scholar
  2. 2.
    Das, M., Ghosh, S.K.: A probabilistic approach for weather forecast using spatio-temporal inter-relationships among climate variables. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE (2014)Google Scholar
  3. 3.
    Das, M., Ghosh, S.K.: semBnet: a semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recognit. Lett. 93, 192–201 (2017)CrossRefGoogle Scholar
  4. 4.
    Das, M., Ghosh, S.K.: Spatio-temporal prediction of meteorological time series data: an approach based on spatial Bayesian network (SpaBN). In: International Conference on Pattern Recognition and Machine Intelligence, pp. 615–622. Springer, Berlin (2017)Google Scholar
  5. 5.
    Das, M., Ghosh, S.K.: Spatio-temporal prediction under scarcity of influencing variables: a hybrid probabilistic graph-based approach. In: 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–6. IEEE (2017)Google Scholar
  6. 6.
    Das, M., Ghosh, S.K.: Data-driven approaches for meteorological time series prediction: a comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognit. Lett. 105, 155–164 (2018)CrossRefGoogle Scholar
  7. 7.
    Das, M., Ghosh, S.K.: Performance analysis for NFBN–a new fuzzy Bayesian network learning approach. In: Recent Findings in Intelligent Computing Techniques, pp. 363–376. Springer, Berlin (2018)Google Scholar
  8. 8.
    Das, M., Ghosh, S.K.: FB-STEP: a fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data. Exp. Syst. Appl. 117, 211–227 (2019)CrossRefGoogle Scholar
  9. 9.
    Das, M., Ghosh, S.K.: Reducing Parameter Value Uncertainty in Discrete Bayesian Network Learning: A Semantic Fuzzy Bayesian Approach. IEEE Transactions on Emerging Topics in Computational Intelligence (2019) [in press]. https://doi.org/10.1109/TETCI.2019.2939582
  10. 10.
    Das, M., Ghosh, S.K., Chowdary, V., Saikrishnaveni, A., Sharma, R.: A probabilistic nonlinear model for forecasting daily water level in reservoir. Water Resour. Manag. 30(9), 3107–3122 (2016)CrossRefGoogle Scholar
  11. 11.
    Das, M., Ghosh, S.K., Gupta, P., Chowdary, V.M., Nagaraja, R., Dadhwal, V.K.: FORWARD: a model for forecasting reservoir water dynamics using spatial Bayesian network (SpaBN). IEEE Trans. Knowl. Data Eng. 29(4), 842–855 (2017)CrossRefGoogle Scholar
  12. 12.
    Tang, H., Liu, S.: Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. 4, pp. 132–137. IEEE (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations