Genomics, Proteomics, and Metabolomics for Stem Cells Monitoring in Regenerative Medicine

  • Saeed Heidari-Keshel
  • Azam Rahimi
  • Mostafa Rezaei-Tavirani
  • Farshid Sefat
  • Arash Khojasteh
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Stem cells are undifferentiated cells that contain long-term potency for differentiation and self-renewal. There is a fine interest to know the mechanisms for stem cells behavior, and use their capacity in medicine researches, developmental and aging studies. In addition to growth factors and morphogens, multiple metabolic pathways take part in the stem cell fate regulation. In current chapter we aim to discuss about stem cell metabolomics such as the ways to maintain stem cell in proliferation and quiescence mood in the hypoxic and normoxic niche. We then describe the mechanisms by which stem cells retain their multipotency properties. Several mechanisms such as oxidative stress which involve in aging reviewed below to explain the decrease in stem cells numbers and function. Then we will go to discuss about the genomics of stem cells. The regulatory genome is significantly important in maintaining pluripotency, therefore scientists attempt to find other components that involved in stem cells differentiation or maintaining self-renewal. We will then explain the specific features of the genomics of IPCs and ESCs. The present work aimed to use the newest genetic engineering techniques combined with in vitro and in vivo imaging applications to realize the full translational potential of hESCs and iPSCs.


Genomics Proteomics Metabolomics Regenerative medicine 


  1. 1.
    Kingham E, Oreffo R. Embryonic and induced pluripotent stem cells: understanding, creating and exploiting the nano-nich for regenerative medicine. ACS Nano. 2013;3:1867–81.CrossRefGoogle Scholar
  2. 2.
    Shyh-Chang N, et al. The metabolic programming of stem cells. Genes Dev. 2017;31:336–46.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McNamara L, et al. Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine. Interface. 2012;9:1713–24.PubMedGoogle Scholar
  4. 4.
    Lorelei D, Harley I. Neural stem cells (NSC) and proteomics. Mol Cell Proteomics. 2016;15:344–54.CrossRefGoogle Scholar
  5. 5.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.CrossRefGoogle Scholar
  6. 6.
    Vlahou A, Fountoulakis M. Proteomic approaches in the search for disease biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;814:11–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Farahani M, Rezaei-Tavirani M, Zali H, Arefi Oskouie A, Omidi M, Lashay A. Deciphering the transcription factormicroRNA- target gene regulatory network associated with graphene oxide cytotoxicity. Nanotoxicology. 2018;12(9):1–13.CrossRefGoogle Scholar
  8. 8.
    Kalantari S, Rutishauser D, Samavat S, Nafar M, Mahmudieh L, Rezaei-Tavirani M, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PloS One. 2013;8:808–30.CrossRefGoogle Scholar
  9. 9.
    Atkinson S, Armstrong L. Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res. 2008;331:23–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Aslam B, Basit M, Nisar M, Khurshid M, Rasool M. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;2:182–96.CrossRefGoogle Scholar
  11. 11.
    Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modeling and drug discovery. Nat. Rev. Mol Cell Biol. 2016;17:170–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Fan HC, Metzler KRC, Panagiotakos G, Thom N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P. Lineage-specific profiling delineates the emergence and progression of naïve pluripotency in mammalian embryogenesis. Dev Cell. 2015;35:366–82.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Carbognin E, Betto RM, Soriano ME, Smith AG, Martello G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naïve pluripotency. EMBO J. 2016;35:618–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518:413–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, Wang X, Hu X, Gu T, Zhou Z, et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet. 2013;12:1504–9.CrossRefGoogle Scholar
  17. 17.
    Davidson K, Mason EA, Pera MF. The pluripotent state in mouse and human. Development. 2015;142:3090–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, Qian CN, Ong P, Li Z, Chen S, Mak SY, et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med. 2016;22:666–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, et al. Lkb1 regulates quiescence and metabolic homeostasis of hematopoietic stem cells. Nature. 2010;468:701–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Goh LH, Zhou X, Lee MC, Lin S, Wang H, Luo Y, Yang X. Clueless regulates aPKC activity and promotes self-renewal cell fate in Drosophila lgl mutant larval brains. Dev Biol. 2013;381:353–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Gu W, Gaeta X, Sahakyan A, Chan AB, Hong CS, Kim R, Braas D, Plath K, Lowry WE, Christofk HR. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell. 2016;19:476–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hochmuth C, Biteau B, Bohmann D, Jasper H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell. 2011;8:188–99.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat Rev Mol Cell Biol. 2014;15:411–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S, Mizoguchi T, Arai F, Runnels JM, Alt C, Teruya-Feldstein J, et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354:1156–60.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Karigane D, Kobayashi H, Morikawa T, Ootomo Y, Sakai M, Nagamatsu G, Kubota Y, Goda N, Matsumoto M, Nishimura EK, et al. p38α activates purine metabolism to initiate hematopoietic stem/progenitor cell cycling in response to stress. Cell Stem Cell. 2016;19:192–204.PubMedCrossRefGoogle Scholar
  27. 27.
    Khaw SL, Min-Wen C, Koh CG, Lim B, Shyh-Chang N. Oocyte factors suppress mitochondrial polynucleotide phosphorylaseto remodel the metabolome and enhance reprogramming. Cell Rep. 2015;12:1080–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Prieto J, León XP, Sendra R, Bort R, Ferrer-Lorente R, Raya A, López-García C, Torres J. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Moussaieff A, Rouleau M, Kitsberg D, CohenM LG, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21:392–402.PubMedCrossRefGoogle Scholar
  30. 30.
    Maryanovich M, Zaltsman Y, Ruggiero A, Goldman A, Shachnai L, Zaidman SL, Porat Z, Golan K, Lapidot T, Gross A. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun. 2015;6:7901.PubMedCrossRefGoogle Scholar
  31. 31.
    Luchsinger LL, de Almeida MJ, Corrigan DJ, Mumau M, Snoeck HW. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528–5231.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rimmelé P, Liang R, Bigarella CL, Kocabas F, Xie J, Serasinghe MN, Chipuk J, Sadek H, Zhang CC, Ghaffari S. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 2015;16:1164–76.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, et al. The NAD+-dependent SIRT deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell. 2015;16:171–83.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Shaltouki A, Sivapatham R, Pei Y, Gerencser AA, Momčilović O, Rao MS, Zeng X. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Reports. 2015;4:847–59.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 2014;19:780–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Shyh-Chang N, Daley GQ. Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metab. 2015;21:349–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, et al. The metabolome regulates the epigenetic landscape during naive-toprimed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523–35.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stevens DA, Lee Y, Kang HC, Lee BD, Lee YI, Bower A, Jiang H, Kang SU, Andrabi SA, Dawson VL, et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci. 2015;112:11696–701.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Stoll EA, Makin R, Sweet IR, Trevelyan AJ, Miwa S, Horner PJ, Turnbull DM. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells. 2015;33:2306–19.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ware CB, Nelson AM, Mecham B, et al. Derivation of naïve human embryonic stem cells. Proc Natl Acad Sci. 2014;111:4484–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Vannini N, Girotra M, Naveiras O, Nikitin G, Campos V, Giger S, Roch A, Auwerx J, Lutolf MP. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun. 2016;7:13125.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ueda T, Nagamachi A, Takubo K, Yamasaki N, Matsui H, Kanai A, Nakata Y, Ikeda K, Konuma T, Oda H, et al. Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood. 2015;125:3437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tan JL, Fogley RD, Flynn RA, Ablain J, Yang S, Saint-André V, Fan ZP, Do BT, Laga AC, Fujinaga K, et al. Stress from nucleotide depletion activates the transcriptional regulator HEXIM1 to suppress melanoma. Mol Cell. 2016;62:34–46.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K, Huang J, Graeber TG, Braas D, Teitell MA. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 2016;24:485–93.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158:1254–69.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Xie Z, Jones A, Deeney JT, Hur SK, Bankaitis VA. Inborn errors of long-chain fatty acid β-oxidation link neural stem cell self-renewal to autism. Cell Rep. 2016;14:991–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zhang H, Badur MG, Divakaruni AS, Parker SJ, Jäger C, Hiller K, Murphy AN, Metallo CM. Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep. 2016;16:1536–47.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gore A, Li Z, Fung H-L, Young J, Agarwal S, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63–7.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58–62.CrossRefGoogle Scholar
  51. 51.
    Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8:106–18.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell. 2011;9:366–73.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Riggs JW, Barrilleaux BL, Chan V, Knoepfler PS. Induced pluripotency and oncogenic transformation are distinct, but highly related processes. Stem Cells Dev. 2012;22(1):37–50.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, et al. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinform. 2012;13:99.CrossRefGoogle Scholar
  55. 55.
    Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463:1042–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450:1230–4.CrossRefGoogle Scholar
  57. 57.
    Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27:459–61.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC. A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 2010;7:197–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L. Modeling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Ramachandra CJ, Shahbazi M, Kwang TW, Choudhury Y, Bak XY, Yang J, Wang S. Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors. Nucleic Acids Res. 2011;39:107.CrossRefGoogle Scholar
  61. 61.
    Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res. 2018;59:550–63.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino M. Human induced pluripotent stem cells for modeling neurodevelopmental disorders. Nat Rev Neurol. 2017;13:265–78.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Issaq H, Veenstra T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques. 2008;44:697–700.PubMedCrossRefGoogle Scholar
  64. 64.
    Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 2005;382:669–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Kroksveen AC, Jaffe JD, Aasebo E, Barsnes H, Bjorlykke Y. Quantitative proteomics suggests a decrease in the secretogranin-1 cerebrospinal fluid levels during the disease course of multiple sclerosis. Proteomics. 2015;15:3361–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Cravatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics. Nature. 2007;450:991–1000.PubMedCrossRefGoogle Scholar
  67. 67.
    Dai B, Rasmussen TP. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells. 2007;25:2567–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Freitas MA, Sklenar AR, Parthun MR. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem. 2004;92:691–700.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cells. Dev Biol. 2004;269:360–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;442:533–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Josephson R, Ording CJ, Liu Y, Shin S, Lakshmipathy U, Toumadje A, Love B, Chesnut JD, Andrews PW, Rao MS, Auerbach JM. Qualification of embryonal carcinoma 2102Ep as a reference for human embryonic stem cell research. Stem Cells. 2007;25:437–46.PubMedCrossRefGoogle Scholar
  72. 72.
    Kirkpatrick DS, Denison C, Gygi SP. Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol. 2005;7:750–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hassani SN, Totonchi M, Gourabi H. Signaling roadmap modulating naive and primed pluripotency. Stem Cells Dev. 2014;23:193–208.PubMedCrossRefGoogle Scholar
  74. 74.
    Hughes C, Radan L, Wing Y, William L, Dean H, Gilles A. Mass spectrometry-based proteomic analysis of the matrix microenvironment in pluripotent stem cell culture. Mol Cell Proteomics. 2012;11:1924–36.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta-analysis of membrane proteomics reports. Expert Rev Proteomics. 2018;55:1–21.Google Scholar
  76. 76.
    Stanton LW, Bakre MM. Genomic and proteomic characterization of embryonic stem cells. Curr Opin Chem Biol. 2007;11:399–404.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK. Elucidating the secretion proteome of human ESC derived mesenchymal stem cells. Mol Cell Proteomics. 2007;6:1680–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Van Hoof D, Passier R, Ward-Van Oostwaard D, Pinkse MW, Heck AJ, Mummery CL, Krijgsveld J. A quest for human and mouse embryonic stem cell-specific proteins. Mol Cell Proteomics. 2006;5:1261–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Van Hoof D, Mummery CL, Heck AJ, Krijgsveld J. Embryonic stem cell proteomics. Proteomics. 2006;3:427–37.PubMedGoogle Scholar
  80. 80.
    Van Hoof D, Pinkse MW, Oostwaard DW, Mummery CL, Heck AJ, Krijgsveld J. An experimental correction for arginine-to-proline conversion artifacts in SILACbased quantitative proteomics. Nat Methods. 2007;4:677–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, Zhang W, Sze SK, Lim B, Ng HH. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem. 2006;281:24090–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao S, Nichols J, Smith AG, Li M. SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol Cell Neurosci. 2004;27:332–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Bryder DR, Weissman DJ, IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006;169:338–46.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kern S, Eichler H, Stove J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.PubMedCrossRefGoogle Scholar
  85. 85.
    Pevsner-Fischer M, Levin S, Zipori D. The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev. 2011;7:560–8.CrossRefGoogle Scholar
  86. 86.
    Hematti P. Human embryonic stem cell-derived mesenchymal stromal cells. Transfusion. 2011;51:138S–44S.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    de Peppo GM, et al. Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications. Tissue Eng Part A. 2010;16:2161–82.PubMedCrossRefGoogle Scholar
  88. 88.
    Vodyanik MA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7:718–29.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kimbrel EA, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23:1611–24.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sanchez L, et al. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti- inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells. 2011;29:251–62.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang X, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports. 2014;3:115–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liberski AR, et al. Adaptation of a commonly used, chemically defined medium for human embryonic stem cells to stable isotope labeling with amino acids in cell culture. J Proteome Res. 2013;12:3233–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamana R, Iwasaki M, Wakabayashi M, Nakagawa M, Yamanaka S, Ishihama Y. Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot NanoLC−MS/MS analysis with meter-scale monolithic silica columns. J Proteome Res. 2012;44:1–12.Google Scholar
  94. 94.
    Pripuzova N, Getie-Kebtie M, Grunseich C, Sweeneyc C, Malechc H, Alterman M. Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs) using global quantitative proteome analysis. Stem Cell Res. 2015;14:323–38.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saeed Heidari-Keshel
    • 1
  • Azam Rahimi
    • 1
  • Mostafa Rezaei-Tavirani
    • 2
  • Farshid Sefat
    • 3
    • 4
  • Arash Khojasteh
    • 1
  1. 1.Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Proteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Biomedical and Electrical Engineering Department, School of EngineeringUniversity of BradfordBradfordUK
  4. 4.Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer)University of BradfordBradfordUK

Personalised recommendations