Molecular Subtyping in Human Disease Using the Paraclique Algorithm

  • Ronald D. HaganEmail author
  • Michael A. Langston
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1062)


Recent discoveries of distinct molecular subtypes have led to remarkable advances in treatment for a variety of diseases. While subtyping via unsupervised clustering has received a great deal of interest, most methods rely on basic statistical or machine learning methods. In this paper we discuss a method based on the paraclique algorithm, and demonstrate its potential effectiveness through testing on four sets of publicly available gene expression microarray data.


Molecular subtyping Paraclique Graph algorithms 


  1. 1.
    Mok, T.S., et al.: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361(10), 947–957 (2009)CrossRefGoogle Scholar
  2. 2.
    Shaw, A.T., et al.: Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368(25), 2385–2394 (2013)CrossRefGoogle Scholar
  3. 3.
    Leith, C.P., et al.: Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 89(9), 3323–3329 (1997)Google Scholar
  4. 4.
    Balko, J.M., et al.: Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med. 18(7), 1052–1059 (2012)CrossRefGoogle Scholar
  5. 5.
    Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds.) RRG/RSB -2005. LNCS, vol. 4023, pp. 150–165. Springer, Heidelberg (2007). Scholar
  6. 6.
    Hagan, R.D., Langston, M.A., Wang, K.: Lower Bounds on Paraclique Density. Discret. Appl. Math. 204, 208–212 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, K., Phillips, C.A., Saxton, A.M., Langston, M.A.: EntropyExplorer: an R package for computing and comparing differential Shannon entropy, differential coefficient of variation and differential expression. BMC Res. Notes 8, 832 (2015)CrossRefGoogle Scholar
  8. 8.
    Woodruff, P.G.: Subtypes of asthma defined by epithelial cell expression of messenger RNA and microRNA. Annal. Am. Thorac. Soc. 10(Suppl.), S186–S189 (2013)Google Scholar
  9. 9.
    Srour, N., Reymond, M.A., Steinert, R.: Lost in translation? a systematic database of gene expression in breast cancer. Pathobiology 75(2), 112–118 (2008)CrossRefGoogle Scholar
  10. 10.
    de Silva Rudland, S., et al.: Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer. Clin. Cancer Res. 12(4), 1192–1200 (2006)CrossRefGoogle Scholar
  11. 11.
    Wiestner, A., et al.: ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101(12), 4944–4951 (2003)CrossRefGoogle Scholar
  12. 12.
    Belov, L., Zhou, J., Christopherson, R.I.: Cell surface markers in colorectal cancer prognosis. Int. J. Mol. Sci. 12(1), 78–113 (2010)CrossRefGoogle Scholar
  13. 13.
    Besson, D., et al.: A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol. Cell. Proteomics 10(12), M111.009712 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BAE SystemsBurlingtonUSA
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of TennesseeKnoxvilleUSA

Personalised recommendations