mirLSTM: A Deep Sequential Approach to MicroRNA Target Binding Site Prediction

  • Ahmet PakerEmail author
  • Hasan OğulEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1062)


MicroRNAs (miRNAs) are small and non-coding RNAs of ~21–23 base length, which play critical role in gene expression. They bind the target mRNAs in the post-transcriptional level and cause translational inhibition or mRNA cleavage. Quick and effective detection of the binding sites of miRNAs is a major problem in bioinformatics. In this study, a deep learning approach based on Long Short Term Memory (LSTM) is developed with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed LSTM model performs better in terms of the accuracy (ACC), sensitivity, specificity, AUC (Area under the curve) and F1 score. A web-tool is also developed to identify and display the microRNA target sites effectively and quickly.


Deep learning RNN LSTM Bioinformatics Sequence Alignment miRNA Target prediction miRNA target site 


  1. 1.
    Bartel, D.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)CrossRefGoogle Scholar
  2. 2.
    Bartel, D.: MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004)CrossRefGoogle Scholar
  3. 3.
    Xu, B., Hsu, P., Karayiorgou, M., Gogos, J.: MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol. Dis. 46(2), 291–301 (2012)CrossRefGoogle Scholar
  4. 4.
    Oğul, H., Umu, S., Tuncel, Y., Akkaya, M.: A probabilistic approach to microRNA-target binding. Biochem. Biophys. Res. Commun. 413(1), 111–115 (2011)CrossRefGoogle Scholar
  5. 5.
    Wen, M., Cong, P., Zhang, Z., Lu, H., Li, T.: DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics 34(22), 3781–3787 (2018)CrossRefGoogle Scholar
  6. 6.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443–453 (1970)CrossRefGoogle Scholar
  7. 7.
    Ding, J., Li, X., Hu, H.: TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 32, 2768–2775 (2016)CrossRefGoogle Scholar
  8. 8.
    Agarwal, V., Bell, G., Nam, J., Bartel, D.: Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015)Google Scholar
  9. 9.
    Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25, 117–149 (1996)CrossRefGoogle Scholar
  10. 10.
    Menor, M., et al.: mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome Biol. 15, 500 (2014)CrossRefGoogle Scholar
  11. 11.
    Helwak, A., et al.: Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013)CrossRefGoogle Scholar
  12. 12.
    Dede, D., Oğul, H.: TriClust: a tool for cross-species analysis of gene regulation. Mol. Inf. 33(5), 382–387CrossRefGoogle Scholar
  13. 13.
    Oğul, H., Akkaya, M.S.: Data integration in functional analysis of microRNAs. Curr. Bioinf. 6, 462–472 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringBaşkent UniversityAnkaraTurkey
  2. 2.Faculty of Computer SciencesØstfold University CollegeHaldenNorway

Personalised recommendations