Advertisement

Conflict Avoidance Within Max-Plus Fault-Tolerant Control: Application to a Seat Assembly System

  • Marcin WitczakEmail author
  • Paweł Majdzik
  • Bogdan Lipiec
  • Ralf Stetter
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 241)

Abstract

Flexibility and agility are central requirements for future manufacturing systems (especially assembly systems), because in most industries the product variety and the fluctuations in demand are still increasing. An increase of the degree of flexibility allows more efficient activities aiming at following the dynamically evolving markets. Such systems should be able to react to changes of product, demands, increased varieties of products requirements concerning reduced delivery times and increased product quality. Therefore, a strong focus on the flexibility of manufacturing and assembly systems leads to economic advantages for industrial companies in terms of the system investment cost. In particular, the cost related to the reconfiguration of the system.

Notes

Acknowledgements

The work was supported by the National Science Centre, Poland under Grant: UMO-2017/27/B/ST7/00620.

References

  1. 1.
    Rossiter, J.A.: Model-Based Predictive Control: A Practical Approach. CRC Press, Bocca Raton (2013)Google Scholar
  2. 2.
    Prodan, I., Olaru, S., Stoica, C., Niculescu, S.-I.: Predictive control for trajectory tracking and decentralized navigation of multi-agent formations. Int. J. Appl. Math. Comput. Sci. 23(1), 91–102 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gruzlikov, A.M., Kolesov, N.V.: Discrete-event diagnostic model for a distributed computational system. Merging chains. Autom. Remote Control 78(4), 682–688 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Polak, M., Majdzik, P., Banaszak, Z., Robert Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundam. Inf. 60(1), 269–289 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Abrams, M., Doraswamy, N., Chitra, A.M.: Visual analysis of parallel and distributed programs in the time, event, and frequency domains. IEEE Trans. Parallel Distrib. Syst. 3(6), 672–685 (1992)CrossRefGoogle Scholar
  6. 6.
    Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)CrossRefGoogle Scholar
  7. 7.
    De Schutter, B., Van Den Boom, T.: Model predictive control for max-plus-linear discrete event systems. Automatica 37(7), 1049–1056 (2001)CrossRefGoogle Scholar
  8. 8.
    Park, S.J., Lim, J.T.: Robust and nonblocking supervisor for discreteevent systems with model uncertainty under partial observation. IEEE Trans. Autom. Control 45(9), 2393–2396 (2000)CrossRefGoogle Scholar
  9. 9.
    Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems. Springer International Publishing, Berlin (2014)CrossRefGoogle Scholar
  10. 10.
    Stetter, R., Simundsson, A.: Design for control. In: Proceedings of the 21st International Conference on Engineering Design, Vancouver, Canada, 21–25 Aug 2017, pp. 149–158. The Design Society (2017)Google Scholar
  11. 11.
    Seybold, L., Pieczyński, A., Paczynski, A, Stetter R.: Concept of an advanced monitoring, planning, control and diagnosis system for autonomous vehicles. In: Simani, S., Bonfé, M., Castaldi, P., Mimmo, N. (eds.) Proceedings of the 8th Workshop on Advanced Control and Diagnosis, ACD’2010, Ferrara, Italy, 18–19 Nov 2010, pp. 107–112 (2010)Google Scholar
  12. 12.
    Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and US Air Force vehicles. In: 53rd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 23–26 April 2012Google Scholar
  13. 13.
    Tao, F,; Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017)CrossRefGoogle Scholar
  14. 14.
    Uhlemann, H.J., Lehmann, C., Steinheipler, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Proc. CIRP 61, 335–340 (2017)CrossRefGoogle Scholar
  15. 15.
    Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, Fangyuan, H.S.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol.D 94, 3563–3576 (2018)CrossRefGoogle Scholar
  16. 16.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New York (1994)Google Scholar
  17. 17.
    Butkovic, P.: Max-Linear Systems: Theory and Algorithms. Springer, Berlin (2010)Google Scholar
  18. 18.
    Martin, H.: Transport und Lagerlogistik: Systematik, Planung, Einsatz und Wirtschaftlichkeit. Springer, Berlin (2016)CrossRefGoogle Scholar
  19. 19.
    Stetter, R., Bertsch, S., Eckart, P. Paczynski, A.: Torque steering system for electrical and hybrid power trains. In: Proceedings of 13th EAEC European Automotive Congress, Valencia, Spain, 13–16 June 2011 (2011)Google Scholar
  20. 20.
    Baruwa, O.T., Piera, M.A., Guasch, A.: Deadlock-Free Scheduling Method for flexible manufacturing systems based on timed colored petri nets and anytime heuristic search IEEE transactions on systems. Man, Cybern. Syst. 5(45), 1–12 (2015)Google Scholar
  21. 21.
    An, Y., Wu, N., Chen, P.: Short-term scheduling of vehicle testing system using object petri net. IEEE Access 6, 61317–61330 (2018)CrossRefGoogle Scholar
  22. 22.
    Ribeiro, G., Saldanha, R., Maia, C.: Analysis of decision stochastic discrete-event systems aggregating max-plus algebra and markov chain journal of control. Autom. Electr. Syst. 29(5), 576–585 (2018)CrossRefGoogle Scholar
  23. 23.
    Majdzik, P., Akieleszak-Witczak, A., Seybold, L., Stetter, R., Mrugalska, B.: A fault-tolerant approach to the control of a battery assembly system. Control Eng. Pract. 55, 139–148 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland
  2. 2.Faculty Mechanical EngineeringUniversity of Applied Sciences Ravensburg-WeingartenWeingartenGermany

Personalised recommendations