Advertisement

On Estimating LON-Based Measures in Cyclic Assignment Problem in Non-permutational Flow Shop Scheduling Problem

  • Andrzej GnatowskiEmail author
  • Teodor Niżyński
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 241)

Abstract

In recent years, Fitness Landscape Analysis (FLA) has provided a variety of new methods to analyze problem instances, allowing for a better understanding of the challenges that operations research is facing. Many from the most promising FLA methods are based on Local Optima Networks (LON), a compact representation of a search space from the perspective of a optimization algorithms. In order to obtain a represantative LON, a solution space sampling procedure must be utilized. However, there is little known about the proper sampling methods—as well as the minimal ammout of computational effort required to sufficiently sample the space. In this chapter, we investigate the impact of the number of samples taken, on the obtained LON metrics for Cyclic Assignment Problem in non-permutational Flow Shop Scheduling Problem. The sampling process is performed in incremental steps, until the entire solution space is analyzed. After each step, LON measures are calculated. The results suggest a strong relation between the measure values and sampling effort.

Notes

Acknowledgements

The chapter was partially supported by the National Science Centre of Poland, grant OPUS number DEC 2017/25/B/ST7/02181.

References

  1. 1.
    Bożejko, W., Gnatowski, A., Idzikowski, R., Wodecki, M.: Cyclic flow shop problem with two-machine cells. Arch. Control. Sci. 27(2), 151–167 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bożejko, W., Gnatowski, A., Klempous, R., Affenzeller, M., Beham, A.: Cyclic scheduling of a robotic cell. In: 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 379–384. IEEE (2016)Google Scholar
  3. 3.
    Bożejko, W., Gnatowski, A., Niżyński, T., Affenzeller, M., Beham, A.: Local optima networks in solving algorithm selection problem for TSP. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Contemporary Complex Systems and Their Dependability. DepCoS-RELCOMEX 2018. Advances in Intelligent Systems and Computing, vol. 761, pp. 83–93. Springer, Cham (2019)Google Scholar
  4. 4.
    Bożejko, W., Pempera, J., Wodecki, M.: Minimal cycle time determination and golf neighborhood generation for the cyclic flexible job shop problem. Bull. Pol. Acad. Sci.: Tech. Sci. 66(3), 333–344 (2018)Google Scholar
  5. 5.
    Chaudhry, I.A., Khan, A.A.: A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Crama, Y., Kats, V., van de Klundert, J., Levner, E.: Cyclic scheduling in robotic flowshops. Ann. Oper. Res. 96(1), 97–124 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dawande, M., Geismar, H.N., Sethi, S.P., Sriskandarajah, C.: Sequencing and scheduling in robotic cells: recent developments. J. Sched. 8(5), 387–426 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dawande, M.W., Geismar, H.N., Suresh, P.S., Sriskandarajah, C., Sethi, S., Sriskandarajah, C.: Throughput Optimization in Robotic Cells. Springer, Boston (2007)zbMATHGoogle Scholar
  9. 9.
    Gultekin, H., Coban, B., Akhlaghi, V.E.: Cyclic scheduling of parts and robot moves in m -machine robotic cells. Comput. Oper. Res. 90, 161–172 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hall, N.G., Kamoun, H., Sriskandarajah, C.: Scheduling in robotic cells: classification, two and three machine cells. Oper. Res. 45(3), 421–439 (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Technical report RR-7871, INRIA. https://hal.inria.fr/hal-00665421v2. Accessed 30 March 2019
  12. 12.
    Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network characterization of QAPLIB instances. In: Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 453–460. ACM Press, New York (2014)Google Scholar
  13. 13.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, pp. 149–190. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  14. 14.
    Lu, H., Shi, J., Fei, Z., Zhou, Q., Mao, K.: Measures in the time and frequency domains for fitness landscape analysis of dynamic optimization problems. Appl. Soft Comput. 51, 192–208 (2017)CrossRefGoogle Scholar
  15. 15.
    Naudts, B., Suys, D., Verschoren, A.: Epistasis as a basic concept in formal landscape analysis. In: Proceedings of the 7th International Conference on Genetic Algorithms, pp. 65–72. Morgan Kaufmann, Burlington (1997)Google Scholar
  16. 16.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ochoa, G., Veerapen, N.: Additional dimensions to the study of funnels in combinatorial landscapes. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference—GECCO’16, pp. 373–380. ACM Press, New York (2016)Google Scholar
  19. 19.
    Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes. J. Heuristics 24(3), 265–294 (2017)CrossRefGoogle Scholar
  20. 20.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, pp. 233–262. Springer, Berlin (2014)CrossRefGoogle Scholar
  21. 21.
    Peixoto, T.P.: The graph-tool python library. http://figshare.com/articles/graph_tool/1164194 (2014). Accessed 30 March 2019
  22. 22.
    Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Appl. Math. Comput. 117(2–3), 321–350 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rosé, H., Ebeling, W., Asselmeyer, T.: The density of states — a measure of the difficulty of optimisation problems. In: Guervós, J.J.M., Adamidis, P., Beyer, H.G., Schwefel, H.P., Fernández-Villacañas, J.L. (eds.) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol. 2439, pp. 208–217. Springer, Berlin (1996)CrossRefGoogle Scholar
  24. 24.
    Ruiz, R., Vázquez-Rodríguez, J.A.: The hybrid flow shop problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., Kubiak, W.: Sequencing of parts and robot moves in a robotic cell. Int. J. Flex. Manuf. Syst. 4(3–4), 331–358 (1992)CrossRefGoogle Scholar
  26. 26.
    Shirakawa, S., Nagao, T.: Bag of local landscape features for fitness landscape analysis. Soft Comput. 20(10), 3787–3802 (2016)CrossRefGoogle Scholar
  27. 27.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Berlin (2002)CrossRefGoogle Scholar
  28. 28.
    Thomson, S.L., Ochoa, G., Daolio, F., Veerapen, N.: The effect of landscape funnels in QAPLIB instances. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion on—GECCO’17, pp. 1495–1500. ACM Press, New York (2017)Google Scholar
  29. 29.
    Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)CrossRefGoogle Scholar
  30. 30.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Control Systems and Mechatronics, Faculty of ElectronicsWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations