Advertisement

Cyclic Scheduling in the Manufacturing Cell

  • Wojciech Bożejko
  • Jarosław Pempera
  • Czesław Smutnicki
  • Mieczysław WodeckiEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 241)

Abstract

The chapter is devoted to scheduling of jobs performed by machines and by an operator in the automated manufacturing cell, which produces parts in large production batches. The purpose of scheduling is to determine a cyclical schedule that minimizes production cycle time. The chapter presents the original model of the problem that enables effective determination of cycle time for any sequence of operations in the cell. What is more, there was an algorithm proposed that determines the sequence and schedule of works minimizing the production cycle time.

References

  1. 1.
    Batur, G.D., Karasan, O.E., Akturk, M.S.: Multiple part-type scheduling in flexible robotic cells. Int. J. Prod. Econ. 135(2), 726–740 (2012)CrossRefGoogle Scholar
  2. 2.
    Bożejko, W., Pempera, J., Wodecki, M.: Minimization of the number of employees in manufacturing cells. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, pp. 241–248. Springer (2019)Google Scholar
  3. 3.
    Bożejko, W., Pempera, J., Wodecki, M.: Minimal cycle time determination and golf neighborhood generation for the cyclic flexible job shop problem. Bull. Pol. Acad. Sci.: Tech. Sci. 66(3), 333–344 (2018)Google Scholar
  4. 4.
    Brucker, P., Kampmeyer, T.: Cyclic job shop scheduling problems with blocking. Ann. Oper. Res. 159, 161–181 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chtourou, S., Manier, M.A., Loukil, T.: A hybrid algorithm for the cyclic hoist scheduling problem with two transportation resources. Comput. Ind. Eng. 65(3), 426–437 (2013)CrossRefGoogle Scholar
  6. 6.
    Elmi, A., Topaloglu, S.: Multi-degree cyclic flow shop robotic cell scheduling problem: ant colony optimization. Comput. Oper. Res. 73(C), 67–83 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Galante, G., Passannanti, G.: Minimizing the cycle time in serial manufacturing systems with multiple dual-gripper robots. Int. J. Prod. Res. 44(4), 639–652 (2006)CrossRefGoogle Scholar
  8. 8.
    Kampmeyer, T.: Cyclic scheduling problems. Ph.D. thesis, University Osnabriick (2006)Google Scholar
  9. 9.
    Manier, M.A., Lamrous, S.: An evolutionary approach for the design and scheduling of electroplating facilities. J. Math. Model. Algorithms 7(2), 197–215 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pempera, J., Smutnicki, C.: Open shop cyclic scheduling. Eur. J. Oper. Res. 269(2), 773–781 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yan, P., Chu, C., Yang, N., Che, A.: A branch and bound algorithm for optimal cyclic scheduling in a robotic cell with processing time windows. Int. J. Prod. Res. 48(21), 6461–6480 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Control Systems and Mechatronics, Faculty of ElectronicsWrocław University of Science and TechnologyWrocławPoland
  2. 2.Department of Computer Engineering, Faculty of ElectronicsWrocław University of Science and TechnologyWrocławPoland
  3. 3.Department of Telecommunications and Teleinformatics, Faculty of ElectronicsWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations