Intersection Homology After Deligne

  • Laurenţiu G. Maxim
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)


In this chapter, we explain the sheaf-theoretic approach to intersection homology theory. We introduce here the Deligne intersection cohomology complex, whose hypercohomology computes the intersection homology groups. This complex of sheaves can be described axiomatically in a way that is independent of the stratification or any additional geometric structure (such as a piecewise linear structure), leading to a proof of the topological invariance of intersection homology groups.


  1. 6.
    Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)Google Scholar
  2. 12.
    Beı̆linson, A.A., Bernstein, J.N., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981). Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)Google Scholar
  3. 15.
    Borel, A.: Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2008)zbMATHGoogle Scholar
  4. 18.
    Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981). Astérisque, vol. 101, pp. 23–74. Soc. Math. France, Paris (1983)Google Scholar
  5. 31.
    Cappell, S.E., Shaneson, J.L.: Singular spaces, characteristic classes, and intersection homology. Ann. Math. (2) 134(2), 325–374 (1991)MathSciNetCrossRefGoogle Scholar
  6. 60.
    Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)CrossRefGoogle Scholar
  7. 61.
    Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)CrossRefGoogle Scholar
  8. 67.
    Durfee, A.H.: Intersection homology Betti numbers. Proc. Am. Math. Soc. 123(4), 989–993 (1995)MathSciNetCrossRefGoogle Scholar
  9. 76.
    Friedman, G.: An introduction to intersection homology with general perversity functions. In: Topology of Stratified Spaces. Mathematical Sciences Research Institute Publications, vol. 58, pp. 177–222. Cambridge University Press, Cambridge (2011)Google Scholar
  10. 83.
    Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)MathSciNetCrossRefGoogle Scholar
  11. 86.
    Goresky, M., Siegel, P.: Linking pairings on singular spaces. Comment. Math. Helv. 58(1), 96–110 (1983)MathSciNetCrossRefGoogle Scholar
  12. 110.
    Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Mathematical Series, v. 4. Princeton University Press, Princeton, N. J. (1941)Google Scholar
  13. 159.
    Maxim, L.: A decomposition theorem for the peripheral complex associated with hypersurfaces. Int. Math. Res. Not. 43, 2627–2656 (2005)MathSciNetCrossRefGoogle Scholar
  14. 160.
    Maxim, L.: Intersection homology and Alexander modules of hypersurface complements. Comment. Math. Helv. 81(1), 123–155 (2006)MathSciNetCrossRefGoogle Scholar
  15. 201.
    Rietsch, K.: An introduction to perverse sheaves. In: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Inst. Commun., vol. 40, pp. 391–429. American Mathematical Society, Providence, RI (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations