Advertisement

Brief Introduction to Sheaf Theory

  • Laurenţiu G. Maxim
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)

Abstract

In this chapter, we introduce the prerequisites needed later on (in Chapter  6) for the sheaf-theoretic description of intersection homology groups.

References

  1. 6.
    Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)Google Scholar
  2. 15.
    Borel, A.: Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2008)zbMATHGoogle Scholar
  3. 23.
    Bredon, G.E.: Sheaf Theory. Graduate Texts in Mathematics, vol. 170, 2nd edn. Springer, New York (1997)CrossRefGoogle Scholar
  4. 48.
    de Cataldo, M.A.A., Migliorini, L.: The hard lefschetz theorem and the topology of semismall maps. Ann. Sci. École Norm. Sup. (4) 35(5), 759–772 (2002)Google Scholar
  5. 61.
    Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)CrossRefGoogle Scholar
  6. 75.
    Friedman, G.: Singular Intersection Homology. http://faculty.tcu.edu/gfriedman/IHbook.pdf
  7. 113.
    Iversen, B.: Cohomology of sheaves. Universitext. Springer, Berlin (1986)CrossRefGoogle Scholar
  8. 122.
    Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292. Springer, Berlin (1994)Google Scholar
  9. 125.
    Kaup, L., Kaup, B.: Holomorphic Functions of Several Variables. De Gruyter Studies in Mathematics, vol. 3. Walter de Gruyter & Co., Berlin (1983) An introduction to the fundamental theory, With the assistance of Gottfried Barthel, Translated from the German by Michael BridglandGoogle Scholar
  10. 219.
    Spanier, E.H.: Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London (1966)zbMATHGoogle Scholar
  11. 234.
    Verdier, J.-L.: Catégories dérivées: quelques résultats (état 0). In: Cohomologie étale. Lecture Notes in Mathematics, vol. 569, pp. 262–311. Springer, Berlin (1977)CrossRefGoogle Scholar
  12. 236.
    Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque, vol. 239, 1996. With a preface by Luc Illusie, Edited and with a note by Georges MaltsiniotisGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations