Advertisement

Hypersurface Singularities. Nearby and Vanishing Cycles

  • Laurenţiu G. Maxim
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)

Abstract

Some of the early applications of the theory of perverse sheaves appear in Singularity Theory, for the study of complex hypersurface singularities. In Section 10.1 we give a brief overview of the local topological structure of hypersurface singularities, as originally described by Milnor. In Section 10.2 we investigate the global topology of complex hypersurfaces by means of invariants inspired by knot theory. The nearby and vanishing cycle functors, introduced in Section 10.3, are used to glue the local topological data around the singularities. Concrete applications of nearby and vanishing cycles are presented in Section 10.4 (to the computation of Euler characteristics of complex projective hypersurfaces), in Section 10.5 (for obtaining generalized Riemann–Hurwitz-type formulae), and in Section 10.6 (for deriving homological connectivity statements for the local topology of complex singularities).

References

  1. 1.
    A’Campo, N.: Le nombre de Lefschetz d’une monodromie. Nederl. Akad. Wetensch. Proc. Ser. A 76, Indag. Math. 35, 113–118 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 25.
    Brieskorn, E.: Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2, 1–14 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 26.
    Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta Math. 2, 103–161 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 30.
    Budur, N., Liu, Y, Wang, B.: The monodromy theorem for compact Kähler manifolds and smooth quasi-projective varieties. Math. Ann. 371(3–4), 1069–1086 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 32.
    Cappell, S.E., Maxim, L., Shaneson, J.L.: Hodge genera of algebraic varieties. I. Commun. Pure Appl. Math. 61(3), 422–449 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 33.
    Cappell, S.E., Maxim, L., Shaneson, J.L.: Intersection cohomology invariants of complex algebraic varieties. In: Singularities I. Contemporary Mathematics, vol. 474, pp. 15–24. American Mathematical Society, Providence, RI (2008)Google Scholar
  7. 34.
    Cappell, S.E., Maxim, L., Shaneson, J.L.: Euler characteristics of algebraic varieties. Commun. Pure Appl. Math. 61(3), 409–421 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 44.
    Clemens, H.: Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities. Trans. Am. Math. Soc. 136, 93–108 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 51.
    de Cataldo, M.A.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Amer. Math. Soc. (N.S.) 46(4), 535–633 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 59.
    Dimca, A.: Topics on Real and Complex Singularities. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1987)Google Scholar
  11. 60.
    Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)zbMATHCrossRefGoogle Scholar
  12. 61.
    Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  13. 62.
    Dimca, A., Libgober, A.: Regular functions transversal at infinity. Tohoku Math. J. (2) 58(4), 549–564 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 64.
    Dimca, A., Némethi, A.: Hypersurface complements, Alexander modules and monodromy. In: Real and Complex Singularities. Contemporary Mathematics, vol. 354, pp. 19–43. American Mathematical Society, Providence, RI (2004)Google Scholar
  15. 74.
    Fried, D.: Monodromy and dynamical systems. Topology 25(4), 443–453 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 84.
    Goresky, M., MacPherson, R.: Morse theory and intersection homology theory. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981). Astérisque, vol. 101, pp. 135–192. Soc. Math. France, Paris (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 85.
    Goresky, M., MacPherson, R.: Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14. Springer, Berlin (1988)zbMATHCrossRefGoogle Scholar
  18. 91.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994) Reprint of the 1978 originalzbMATHCrossRefGoogle Scholar
  19. 92.
    Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, vol. 288. Springer, Berlin/New York (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. RimGoogle Scholar
  20. 93.
    Groupes de monodromie en géométrie algébrique. II. Lecture Notes in Mathematics, vol. 340. Springer, Berlin/New York (1973). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. KatzGoogle Scholar
  21. 95.
    Hamm, H.: Lefschetz theorems for singular varieties. In: Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, pp. 547–557. Amer. Math. Soc., Providence, RI (1983)Google Scholar
  22. 104.
    Hirzebruch, F.: Singularities and exotic spheres. In: Séminaire Bourbaki, vol. 10, Exp. No. 314, pp. 13–32. Soc. Math. France, Paris (1995)Google Scholar
  23. 111.
    Hurwitz, A.: Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39(1), 1–60 (1891)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 112.
    Iversen, B.: Critical points of an algebraic function. Invent. Math. 12, 210–224 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 122.
    Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292. Springer, Berlin (1994)Google Scholar
  26. 123.
    Kato, M., Matsumoto, Y.: On the connectivity of the Milnor fiber of a holomorphic function at a critical point. In: Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 131–136. Univ. Tokyo Press, Tokyo (1975)Google Scholar
  27. 124.
    Katz, N.M.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. 39, 175–232 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 126.
    Kervaire, M.A., Milnor, J.W.: Groups of homotopy spheres. I. Ann. Math. (2) 77, 504–537 (1963)Google Scholar
  29. 132.
    Landman, A.: On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities. Trans. Am. Math. Soc. 181, 89–126 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 134.
    Lê, D.T.: Topologie des singularités des hypersurfaces complexes. In: Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 171–182. Astérisque, Nos. 7 et 8. Soc. Math. France, Paris (1973)Google Scholar
  31. 135.
    Lê, D.T.: Calcul du nombre de cycles évanouissants d’une hypersurface complexe. Ann. Inst. Fourier (Grenoble) 23(4), 261–270 (1973)Google Scholar
  32. 136.
    Lê, D.T.: Some remarks on relative monodromy. In: Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 397–403. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)Google Scholar
  33. 137.
    Lê, D.T.: The geometry of the monodromy theorem. In: C. P. Ramanujam—a tribute. Tata Inst. Fund. Res. Studies in Math., vol. 8, pp. 157–173. Springer, Berlin/New York (1978)Google Scholar
  34. 140.
    Libgober, A.: Homotopy groups of the complements to singular hypersurfaces. II. Ann. Math. (2) 139(1), 117–144 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 141.
    Liu, Y.: Nearby cycles and Alexander modules of hypersurface complements. Adv. Math. 291, 330–361 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 142.
    Liu, Y., Maxim, L.: Characteristic varieties of hypersurface complements. Adv. Math. 306, 451–493 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 150.
    MacPherson, R.: Intersection Homology and Perverse Sheaves. Unpublished Colloquium Lectures, 1990Google Scholar
  38. 152.
    Massey, D.B.: Critical points of functions on singular spaces. Topol. Appl. 103(1), 55–93 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 153.
    Massey, D.B.: The Sebastiani-Thom isomorphism in the derived category. Compos. Math. 125(3), 353–362 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 154.
    Massey, D.B.: Numerical Control Over Complex Analytic Singularities. Memoirs of the American Mathematical Society, vol. 163, no. 778. American Mathematical Society, Providence, RI (2003)MathSciNetCrossRefGoogle Scholar
  41. 155.
    Massey, D.B.: Natural commuting of vanishing cycles and the Verdier dual. Pac. J. Math. 284(2), 431–437 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 160.
    Maxim, L.: Intersection homology and Alexander modules of hypersurface complements. Comment. Math. Helv. 81(1), 123–155 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 163.
    Maxim, L., Wong, K.T.: Twisted Alexander invariants of complex hypersurface complements. Proc. R. Soc. Edinb. Sect. A 148(5), 1049–1073 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 165.
    Maxim, L., Saito, M., Schürmann, J.: Hirzebruch-Milnor classes of complete intersections. Adv. Math. 241, 220–245 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 166.
    Maxim, L., Israel Rodriguez, J., Wang, B.: Euclidean distance degree of the multiview variety. SIAM J. Appl. Algebra Geom. (to appear). arXiv e-prints. art. arXiv:1812.05648, Dec 2018Google Scholar
  46. 168.
    Maxim, L., Saito, M., Schürmann, J.: Spectral Hirzebruch-Milnor classes of singular hypersurfaces. Math. Ann. 1–35 (2018) https://doi.org/10.1007/s00208-018-1750-4
  47. 169.
    Maxim, L., Israel Rodriguez, J., Wang, B.: Defect of Euclidean Distance Degree. arXiv e-prints art. arXiv:1905.06758, May 2019Google Scholar
  48. 176.
    Milnor, J.W.: Construction of universal bundles. II. Ann. Math. (2) 63, 430–436 (1956)Google Scholar
  49. 178.
    Milnor, J.W.: Morse Theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, NJ (1963)Google Scholar
  50. 179.
    Milnor, J.W.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1968)Google Scholar
  51. 186.
    Némethi, A.: Generalized local and global Sebastiani-Thom type theorems. Compos. Math. 80(1), 1–14 (1991)MathSciNetzbMATHGoogle Scholar
  52. 191.
    Oka, M.: On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials. Topology 12, 19–32 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 193.
    Parusiński, A., Pragacz, P.: A formula for the Euler characteristic of singular hypersurfaces. J. Algebraic Geom. 4(2), 337–351 (1995)MathSciNetzbMATHGoogle Scholar
  54. 194.
    Parusiński, A., Pragacz, P.: Characteristic classes of hypersurfaces and characteristic cycles. J. Algebraic Geom. 10(1), 63–79 (2001)MathSciNetzbMATHGoogle Scholar
  55. 205.
    Saito, M.: Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 208.
    Saito, M.: Decomposition theorem for proper Kähler morphisms. Tohoku Math. J. (2) 42(2), 127–147 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 211.
    Sakamoto, K.: Milnor fiberings and their characteristic maps. In: Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 145–150. Univ. Tokyo Press, Tokyo (1975)Google Scholar
  58. 212.
    Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 214.
    Schürmann, J.: Topology of Singular Spaces and Constructible Sheaves. Monografie Matematyczne, vol. 63. Birkhäuser Verlag, Basel (2003)zbMATHCrossRefGoogle Scholar
  60. 217.
    Sebastiani, M., Thom, R.: Un résultat sur la monodromie. Invent. Math. 13, 90–96 (1971)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations