Topology of Singular Spaces: Motivation, Overview

  • Laurenţiu G. Maxim
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)


In this chapter, we overview the main results and properties of the (co)homology of manifolds, and show in examples that these results fail to be true for singular spaces. This motivates the use of intersection homology, which recovers the corresponding results in the singular context.


  1. 2.
    Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Ann. Math. (2) 69, 713–717 (1959)MathSciNetCrossRefGoogle Scholar
  2. 58.
    Dieudonné, J.: A History of Algebraic and Differential Topology. 1900–1960. Birkhäuser Boston, Inc., Boston, MA (1989)CrossRefGoogle Scholar
  3. 91.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994) Reprint of the 1978 originalCrossRefGoogle Scholar
  4. 98.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  5. 105.
    Hodge, W.V.D.: The Theory and Applications of Harmonic Integrals. Cambridge University Press, Cambridge; Macmillan Company, New York (1941)Google Scholar
  6. 139.
    Lefschetz, S.: L’analysis situs et la géométrie algébrique. Gauthier-Villars, Paris (1950)zbMATHGoogle Scholar
  7. 178.
    Milnor, J.W.: Morse Theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, NJ (1963)Google Scholar
  8. 196.
    Poincaré, H.: Complément à l’Analysis Situs. Rendiconti del Circolo Matematico di Palermo 13, 285–343 (1899)CrossRefGoogle Scholar
  9. 197.
    Poincaré, H.: Second Complément à l’Analysis Situs. Proc. Lond. Math. Soc. 32, 277–308 (1900)MathSciNetCrossRefGoogle Scholar
  10. 222.
    Stanley, R.P.: Combinatorial applications of the hard Lefschetz theorem. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Warsaw, 1983), pp. 447–453. PWN, Warsaw (1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations