A Rapid and Low Noise RANS-to-WMLES Condition in Curvilinear Compressible ZDES Simulations

  • Nicolas RenardEmail author
  • Sébastien Deck
  • Pierre-Élie Weiss
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


The rapid and low-noise strategy of Deck et al. [9] for the RANS-to-WMLES switch compatible with compressible flow solvers on curvilinear grids is presented. It can be used both as an inflow condition or as an embedded resolved turbulence injection and combines Zonal Detached Eddy Simulation, Dynamic Forcing and Zonal Immersed Boundary Conditions (for roughness elements) approaches. The relaxation length is close to 7 boundary layer thicknesses on coarse grids and the feasibility on a 3-element high-lift airfoil is demonstrated. On a flat plate, no spurious acoustic footprint of the inflow is visible in the wall pressure spectra, of which the low-frequency part is obtained. The intermittent nature of wall turbulence is captured. The hybrid RANS/LES context makes the computational effort affordable for industrial applications, e.g. aeroacoustic studies.



The authors wish to thank all the people involved in the past and present evolution of the FLU3M code. The ZIBC approach has been developed in the framework of the research project ALLIGATOR funded by ONERA. Part of this work is also related to the EU collaborative research project Go4Hybrid, funded by the European Community in the 7th Framework Programme, under Contract No. 605361.


  1. 1.
    Deck, S., Renard, N., Laraufie, R., Sagaut, P.: Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range \(3\,150 \le Re_\theta \le 14\,000\). Phys. Fluids 26, 025116 (2014)Google Scholar
  2. 2.
    Deck, S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)CrossRefGoogle Scholar
  3. 3.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  4. 4.
    Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jarrin, N., Prosser, R., Uribe, J.C., Benhamadouche, S., Laurence, D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method. Int. J. Heat Fluid Flow 30, 435–442 (2009)CrossRefGoogle Scholar
  6. 6.
    Pamiès, M., Weiss, P.E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21, 045103 (2009)Google Scholar
  7. 7.
    Spille-Kohoff, A., Kaltenbach, H.: Generation of turbulent inflow data with a described shear-stress profile. In: Liu, C., Sakell, L., Beutner, T. (eds.) Proceedings, Third AFOSR Intermational Conference on DNS/LES, Arlington, pp. 137–147. Greyden press, Columbus, OH, 5–9 August (2001)Google Scholar
  8. 8.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93, 63–92 (2014)CrossRefGoogle Scholar
  9. 9.
    Deck, S., Weiss, P.E., Renard, N.: A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers. J. Comput. Phys. 363, 231–255 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)Google Scholar
  11. 11.
    Deck, S., Weiss, P.E., Pamiès, M., Garnier, E.: Zonal Detached Eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48, 1–15 (2011)CrossRefGoogle Scholar
  12. 12.
    Renard, N., Deck, S.: Improvements in Zonal Detached Eddy Simulation for Wall Modeled Large Eddy Simulation. AIAA J. 53(11), 3499–3504 (2015).
  13. 13.
    Cossu, C., Pujals, G., Depardon, S.: Optimal transient growth and very largescale structures in turbulent boundary layers. J. Fluid Mech. 619, 79–94 (2009)CrossRefGoogle Scholar
  14. 14.
    Weiss, P., Deck, S.: On the coupling of a zonal body-fitted/immersed boundary method with ZDES: application to the interactions on a realistic space launcher afterbody flow. Comput. Fluids, in press (2017).
  15. 15.
    Laraufie, R., Deck, S., Sagaut, P.: A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230, 8647–8663 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Deck, S., Laraufie, R.: Numerical investigation of the flow dynamics past a three-element aerofoil. J. Fluid Mech. 732, 401–444 (2013)CrossRefGoogle Scholar
  17. 17.
    Österlund, J.M., Johansson, A.V., Nagib, H.M., Hites, M.H.: A note on the overlap region in turbulent boundary layers. Phys. Fluids 12(1), 1–4 (2000)CrossRefGoogle Scholar
  18. 18.
    DeGraaff, D.B., Eaton, J.K.: Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)CrossRefGoogle Scholar
  19. 19.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefGoogle Scholar
  20. 20.
    Sillero, J., Jimenez, J., Moser, R.: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids 25, 105102 (2013)Google Scholar
  21. 21.
    Nagib, H.M., Chauhan, K.A., Monkewitz, P.A.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos. Trans. R. Soc. A 365, 755–770 (2007)CrossRefGoogle Scholar
  22. 22.
    Renard, N., Deck, S.: On the resolution of mean skin friction by hybrid RANS/LES simulations at high Reynolds numbers. In: S. et al. (ed.) Direct and Large-Eddy Simulation XI, pp. 367–372. Springer (2019)Google Scholar
  23. 23.
    Goody, M.: Empirical spectral model of surface pressure fluctuations. AIAA J. 42(9), 1788–1794 (2004)CrossRefGoogle Scholar
  24. 24.
    Aupoix, B.: Extension of Lysak’s approach to evaluate the wall pressure spectrum for boundary layer flows. Flow Turbul. Combust. 94(1), 63–78 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nicolas Renard
    • 1
    Email author
  • Sébastien Deck
    • 1
  • Pierre-Élie Weiss
    • 1
  1. 1.ONERA The French Aerospace LabMeudonFrance

Personalised recommendations