Scale-Adaptive Simulation (SAS) of Dynamic Stall on a Wind Turbine

  • Abdolrahim RezaeihaEmail author
  • Hamid Montazeri
  • Bert Blocken
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


Scale-adaptive simulation (SAS) approach is employed to investigate the complex dynamic stall phenomena occurring on a wind turbine blade. The results are compared with the more popular less computationally-expensive unsteady Reynolds-averaged Navier-Stokes (URANS) approach where the latter is validated using three sets of experimental data. The comparison reveals that the two approaches have similar predictions of the instant of the formation/bursting/shedding of the laminar separation bubble (LSB) and dynamic stall vortex (DSV), the size of the LSB and aerodynamic loads during the upstroke. This is while the two approaches exhibit dissimilar predictions of the trailing-edge vortex characteristics, its interaction with the DSV, number of secondary vortices and aerodynamic loads during the downstroke.


Wind energy Vertical axis wind turbine (VAWT) Turbulence modeling Hybrid RANS/LES Blade-wake interaction 



The authors acknowledge support from the EU Horizon 2020 (H2020-MSCA-ITN-2014), the TU1304 COST ACTION “WINERCOST, the partnership with ANSYS CFD, the NWO and FWO 12M5319N.


  1. 1.
    Borg, M., Shires, A., Collu, M.: Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: aerodynamics. Renew. Sustain. Energy Rev. 39, 1214–1225 (2014)CrossRefGoogle Scholar
  2. 2.
    Tummala, A., Velamati, R.K., Sinha, D.K., Indraja, V., Krishna, V.H.: A review on small scale wind turbines. Renew. Sustain. Energy Rev. 56, 1351–1371 (2016)CrossRefGoogle Scholar
  3. 3.
    Tjiu, W., Marnoto, T., Mat, S., Ruslan, M.H., Sopian, K.: Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations. Renew. Energy 75, 50–67 (2015)CrossRefGoogle Scholar
  4. 4.
    Rezaeiha, A., Pereira, R., Kotsonis, M.: Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine. Renew. Energy 114(B), 904–916 (2017)Google Scholar
  5. 5.
    Miller, M.A., Duvvuri, S., Brownstein, I., Lee, M., Dabiri, J.O., Hultmark, M.: Vertical-axis wind turbine experiments at full dynamic similarity. J. Fluid Mech. 844, 707–720 (2018)CrossRefGoogle Scholar
  6. 6.
    Zanforlin, S., Deluca, S.: Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis Wind Turbines. Energy 148, 179–195 (2018)CrossRefGoogle Scholar
  7. 7.
    Visbal, M.R., Garmann, D.J.: Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA J. 56(1), 46–63 (2018)CrossRefGoogle Scholar
  8. 8.
    Shamsoddin, S., Porté-Agel, F.: Large Eddy simulation of vertical axis wind turbine wakes. Energies 7(2), 890–912 (2014)CrossRefGoogle Scholar
  9. 9.
    Abkar, M.: Impact of subgrid-scale modeling in actuator-line based large-eddy simulation of vertical-axis wind turbine wakes. Atmosphere 9(7), 257 (2018)CrossRefGoogle Scholar
  10. 10.
    Rezaeiha, A., Montazeri, H., Blocken, B.: Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165(B), 1129–1148 (2018)Google Scholar
  11. 11.
    Rezaeiha, A., Kalkman, I., Montazeri, H., Blocken, B.: Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines. Energy Convers. Manag. 149(C), 616–630 (2017)Google Scholar
  12. 12.
    Rezaeiha, A., Montazeri, H., Blocken, B.: Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: guidelines for azimuthal increment, domain size and convergence. Energy Convers. Manag. 156(C), 301–316 (2018)Google Scholar
  13. 13.
    Rezaeiha, A., Montazeri, H., Blocken, B.: Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers. Manag. 169(C), 45–77 (2018)Google Scholar
  14. 14.
    Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85(1), 113–138 (2010)CrossRefGoogle Scholar
  15. 15.
    Rezaeiha, A., Montazeri, H., Blocken, B.: CFD analysis of dynamic stall on vertical axis wind turbines using scale-adaptive simulation (SAS): comparison against URANS and hybrid RANS/LES. Energy Convers. Manag. 196(C), 1282–1298 (2019)Google Scholar
  16. 16.
    Maleki, S., Burton, D., Thompson, M.C.: Assessment of various turbulence models (ELES, SAS, URANS and RANS) for predicting the aerodynamics of freight train container wagons. J. Wind Eng. Ind. Aerodyn. 170, 68–80 (2017)CrossRefGoogle Scholar
  17. 17.
    Rogowski, K., Hansen, M.O.L., Maroński, R., Lichota, P.: Scale adaptive simulation model for the Darrieus wind turbine. J. Phys: Conf. Ser. 753, 022050 (2016)Google Scholar
  18. 18.
    Egorov, Y., Menter, F.R., Lechner, R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow Turbul. Combust. 85(1), 139–165 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Wang, C., Campagnolo, F., Bottasso, C.L.: Scale-adaptive simulation of wind turbines, and its verification with respect to wind tunnel measurements. Wind. Energy Sci. Discuss., 1–26 (2018)Google Scholar
  20. 20.
    Rezaeiha, A., Kalkman, I., Blocken, B.: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renew. Energy 107, 373–385 (2017)CrossRefGoogle Scholar
  21. 21.
    Blocken, B., Stathopoulos, T., Carmeliet, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41(2), 238–252 (2007)CrossRefGoogle Scholar
  22. 22.
    Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-based transition model using local variables—part I: model formulation. J. Turbomach. 128(3), 413–422 (2006)CrossRefGoogle Scholar
  23. 23.
    Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77(1–4), 277–303 (2006)CrossRefGoogle Scholar
  24. 24.
    Rezaeiha, A., Montazeri, H., Blocken, B.: On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180(C), 838–857 (2019)Google Scholar
  25. 25.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  26. 26.
    Kato, M., Launder, B.E.: The modelling of turbulent flow around stationary and vibrating square cylinders. In: Ninth Symposium on “Turbulent Shear Flows”. Kyoto, Japan (1993)Google Scholar
  27. 27.
    You, D., Ham, F., Moin, P.: Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20(10), 101515 (2008)CrossRefGoogle Scholar
  28. 28.
    Ferreira, C., van Kuik, G., van Bussel, G., Scarano, F.: Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp. Fluids 46(1), 97–108 (2009)CrossRefGoogle Scholar
  29. 29.
    Tescione, G., Ragni, D., He, C., Ferreira, C., van Bussel, G.J.W.: Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew. Energy 70, 47–61 (2014)CrossRefGoogle Scholar
  30. 30.
    Castelli, M.R., Englaro, A., Benini, E.: The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36(8), 4919–4934 (2011)CrossRefGoogle Scholar
  31. 31.
    Rezaeiha, A., Kalkman, I., Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017)CrossRefGoogle Scholar
  32. 32.
    Spalart, P.R.: Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdolrahim Rezaeiha
    • 1
    Email author
  • Hamid Montazeri
    • 1
    • 2
  • Bert Blocken
    • 1
    • 2
  1. 1.TU EindhovenEindhovenThe Netherlands
  2. 2.KU LeuvenLeuvenBelgium

Personalised recommendations