Assessment of Delayed Detached-Eddy Simulation of Dynamic Stall on a Rotor

  • Johannes LetzgusEmail author
  • Pascal Weihing
  • Manuel Keßler
  • Ewald Krämer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


High-fidelity unsteady Reynolds–averaged Navier–Stokes (URANS) and Menter-SST delayed detached-eddy simulations (DDES) of dynamic stall on a rotor with cyclic pitch control are presented and compared to experimental surface pressures and particle-image-velocimetry (PIV) data. Before the dynamic-stall event, the DDES suffers from modeled-stress depletion (MSD) leading to grid-induced separation (GIS) due to a breakdown of the boundary-layer shielding function \(f_d\). Combined with the “grey-area” problem, this leads to severe erroneous load peaks. After dynamic stall, flow is completely separated and only DDES shows realistic small-scale, incoherent vortical structures. Two approaches are investigated to eliminate MSD/GIS: Firstly, increasing the empirical constant \(C_{d1}\) of the \(f_d\) function to 30 basically eliminates GIS. Secondly, a non-local, grid-independent vorticity-integrated algebraic DES, which replaces the \(f_d\) function, is introduced that provides robust boundary-layer shielding and enables the LES mode in case of massive flow separation.



This work was funded by DFG grant Untersuchung der dreidimensionalen dynamischen Strömungsablösung an Rotorblättern (investigation of three-dimensional dynamic stall on rotor blades). Computing resources were provided by the High Performance Computing Centre Stuttgart (HLRS) under project HELISIM.


  1. 1.
    Ashton, N.: Recalibrating detached-eddy simulation to eliminate modelled-stress depletion. In: Proceedings of the 23rd AIAA Computational Fluid Dynamics Conference, 2017, p. 4281 (2017)Google Scholar
  2. 2.
    Gritskevich, M.S., Garbaruk, A.V., Menter, F.R.: Fine-tuning of DDES and IDDES formulations to the k-\(\omega \) shear stress transport model. Prog. Flight Phys. 5, 23–42 (2013)Google Scholar
  3. 3.
    Jain, N., Lee, B., Baeder, J.D.: Assessment of shielding parameters in conventional DDES method under the presence of alternative turbulence length scales. In: Proceedings of the 23rd AIAA Computational Fluid Dynamics Conference, 2017, p. 4282 (2017)Google Scholar
  4. 4.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: 14th fluid and plasma dynamics conference, p. 1259 (1981)Google Scholar
  5. 5.
    Leishman, J.G.: Principles of Helicopter Aerodynamics, 2nd edn, Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Letzgus, J., Gardner, A.D., Schwermer, T., Keßler, M., Krämer, E.: Numerical investigations of dynamic stall on a rotor with cyclic pitch control. J. Am. Helicopter Soc. 64(1), 1–14 (2019).
  7. 7.
    Menter, F.: Stress-blended eddy simulation (SBES)–a new paradigm in hybrid RANS-LES modeling. Progress in Hybrid RANS-LES Modelling, pp. 27–37. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  8. 8.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4(1), 625–632 (2003)Google Scholar
  9. 9.
    Mockett, C., Haase, W., Schwamborn, D.: Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods: Results of the 7th Framework Research Project Go4Hybrid, Funded by the European Union, 2013–2015, vol. 134. Springer, Berlin (2017)Google Scholar
  10. 10.
    Probst, A., Radespiel, R., Wolf, C., Knopp, T., Schwamborn, D.: A comparison of detached-eddy simulation and Reynolds-stress modelling applied to the flow over a backward-facing step and an airfoil at stall. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting, 2010, p. 0920 (2010)Google Scholar
  11. 11.
    Probst, A., Radespiel, R., Knopp, T.: Detached-eddy simulation of aerodynamic flows using a Reynolds-stress background model and algebraic RANS/LES sensors. In: 20th AIAA computational fluid dynamics conference, p. 3206 (2011)Google Scholar
  12. 12.
    Raddatz, J., Fassbender, J.K.: Block structured Navier-Stokes solver FLOWer. In: MEGAFLOW-Numerical Flow Simulation for Aircraft Design, vol. 89, pp. 27–44. Springer, Berlin (2005)Google Scholar
  13. 13.
    Schwermer, T., Richter, K., Raffel, M.: Development of a rotor test facility for the investigation of dynamic stall. In: New Results in Numerical and Experimental Fluid Mechanics X, pp. 663–673. Springer, Berlin (2016)Google Scholar
  14. 14.
    Schwermer, T., Gardner, A.D., Raffel, M.: A novel experiment to understand the dynamic stall phenomenon in rotor axial flight. J. Am. Helicopter Soc. 64(1), 1–11 (2019).
  15. 15.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  16. 16.
    Spalart, P.R., Strelets, M.K.: Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)CrossRefGoogle Scholar
  17. 17.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181–195 (2006)CrossRefGoogle Scholar
  18. 18.
    Vatsa, V.N., Lockard, D.P., Spalart, P.R.: Grid sensitivity of SA-based delayed-detached-eddy-simulation model for blunt-body flows. AIAA J. 55(8), 2842–2847 (2017)CrossRefGoogle Scholar
  19. 19.
    Weihing, P., Letzgus, J., Bangga, G., Lutz, T., Krämer, E.: Hybrid RANS/LES capabilities of the flow solver FLOWer–application to flow around wind turbines. In: Hoarau, Y., Peng, S.H., Schwamborn, D., Revell, A. (eds.) Progress in Hybrid RANS-LES Modelling, pp. 369–380. Springer International Publishing, Cham (2018)Google Scholar
  20. 20.
    Weihing, P., Letzgus, J., Lutz, T., Krämer, E.: Development of alternative shielding functions for detached-eddy simulations. In: 7th Symposium on Hybrid RANS-LES Methods (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Johannes Letzgus
    • 1
    Email author
  • Pascal Weihing
    • 1
  • Manuel Keßler
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations