Advertisement

Application of DDES to Iced Airfoil in Stanford University Unstructured (SU2)

  • Eduardo S. MolinaEmail author
  • Daniel M. Silva
  • Andy P. Broeren
  • Marcello Righi
  • Juan J. Alonso
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

This paper presents the investigation of the turbulent flow around Gates Learjet Corporation-305 airfoil with a leading edge horn-shape glaze ice using Delayed Detached Eddy Simulation (DDES) based on the Spalart–Allmaras turbulence model. The DDES algorithm implemented within the Stanford University Unstructured (SU2) solver was used for all the simulations. Numerical results of this validation effort were compared with experimental data, showing the increase of the prediction accuracy added with High Resolution (HR)-SLAU2 numerical scheme with the Shear-Layer Adapted (SLA) sub-grid scale (SGS) length.

Notes

Acknowledgements

Eduardo Molina and Daniel Martins would like to thank Embraer SA for providing the computational resources.

References

  1. 1.
    Lynch, F.T., Khodadoust, A.: Prog. Aerosp. Sci. 37(8), 669 (2001).  https://doi.org/10.1016/S0376-0421(01)00018-5, http://linkinghub.elsevier.com/retrieve/pii/S0376042101000185
  2. 2.
    Cebeci, T., Kafyeke, F.: Annu. Rev. Fluid Mech. 35(1), 11 (2003).  https://doi.org/10.1146/annurev.fluid.35.101101.161217.
  3. 3.
    Bragg, M., Broeren, A., Blumenthal, L.: Prog. Aerosp. Sci. 41(5), 323 (2005).  https://doi.org/10.1016/j.paerosci.2005.07.001, http://linkinghub.elsevier.com/retrieve/pii/S0376042105000801
  4. 4.
    Addy, H., Broeren, A., Zoeckler, J., Lee, S.: In: 41st Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reno, Nevada (2003).  https://doi.org/10.2514/6.2003-727
  5. 5.
    Broeren, A., Addy, H., Bragg, M.: American Institute of Aeronautics and Astronautics (2004).  https://doi.org/10.2514/6.2004-559
  6. 6.
    Duclercq, M., Brunet, V., Moens, F.: In: 4th AIAA Atmospheric and Space Environments Conference, American Institute of Aeronautics and Astronautics, New Orleans, Louisiana (2012).  https://doi.org/10.2514/6.2012-2798
  7. 7.
    Brown, C.M., Kunz, R.F., Kinzel, M.P., Lindau, J., Palacios, J., Brentner, K.S.: In: 6th AIAA Atmospheric and Space Environments Conference, American Institute of Aeronautics and Astronautics, Atlanta, GA (2014).  https://doi.org/10.2514/6.2014-2203
  8. 8.
    Alam, M.F., Thompson, D.S., Walters, D.K.: J. Aircr. 52(1), 244 (2015).  https://doi.org/10.2514/1.C032678
  9. 9.
    Zhang, Y., Habashi, W.G., Khurram, R.A.: J. Aircr. 53(1), 168 (2016).  https://doi.org/10.2514/1.C033253
  10. 10.
    Xiao, M., Zhang, Y., Chen, H.: American Institute of Aeronautics and Astronautics (2017). https://arc.aiaa.org/doi/10.2514/6.2017-3761
  11. 11.
    Xiao, M., Zhang, Y., Zhou, F.: J. Aircr. 1–14 (2018). https://arc.aiaa.org/doi/10.2514/1.C034986
  12. 12.
    Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: AIAA J. 54(3), 828 (2016).  https://doi.org/10.2514/1.J053813CrossRefGoogle Scholar
  13. 13.
    LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Univesity Press, Cambridge (2002)Google Scholar
  14. 14.
    Saad, Y., Schultz, M.H.: SIAM. J. Sci. Stat. Comput. 7, 856 (1986)CrossRefGoogle Scholar
  15. 15.
    Jameson, A., Schenectady, S.: AIAA Paper 2009, p. 4273 (2009)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Spalart, P.R.: Annu. Rev. Fluid Mech. 41(1), 181 (2009).  https://doi.org/10.1146/annurev.fluid.010908.165130
  19. 19.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Flow, Turbul. Combust. 95(4), 709 (2015).  https://doi.org/10.1007/s10494-015-9618-0
  20. 20.
    Winkler, C., Dorgan, A., Mani, M.: American Institute of Aeronautics and Astronautics (2012). http://arc.aiaa.org/doi/10.2514/6.2012-570
  21. 21.
    Roe, P.L.: J. Comput. Phys. 43(2), 357 (1981). http://www.sciencedirect.com/science/article/pii/0021999181901285
  22. 22.
    Molina, E.S.: Detached Eddy Simulation in SU2. Ph.D. thesis, Aeronautical Institute of Technology (2018)Google Scholar
  23. 23.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: Theor. Comput. Fluid Dyn. 20(3), 181 (2006).  https://doi.org/10.1007/s00162-006-0015-0
  24. 24.
    Molina, E., Spode, C., Annes da Silva, R.G., Manosalvas-Kjono, D.E., Nimmagadda, S., Economon, T.D., Alonso, J.J., Righi, M.: In: 23rd AIAA Computational Fluid Dynamics Conference, AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics (2017).  https://doi.org/10.2514/6.2017-4284
  25. 25.
    Deck, S.: Theor. Comput. Fluid Dyn. 26(6), 523 (2012).  https://doi.org/10.1007/s00162-011-0240-z
  26. 26.
    Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: Flow, Turbul. Combust. (2016).  https://doi.org/10.1007/s10494-016-9769-7
  27. 27.
    Venkatakrishnan, V.: AIAA Paper, 1993, p. 0880 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Eduardo S. Molina
    • 1
    Email author
  • Daniel M. Silva
    • 1
  • Andy P. Broeren
    • 2
  • Marcello Righi
    • 3
  • Juan J. Alonso
    • 4
  1. 1.Embraer SASão José dos CamposBrazil
  2. 2.NASAClevelandUSA
  3. 3.Zurich University of Applied ScienceWinterthurSwitzerland
  4. 4.Stanford UniversityStanfordUSA

Personalised recommendations