Advertisement

ZDES and URANS Simulations of 3D Transonic Buffet Over Infinite Swept Wings

  • Fédéric PlanteEmail author
  • Julien Dandois
  • Éric Laurendeau
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

This paper presents a study of transonic buffet over three-dimensional infinite swept wings. These configurations consist of the extrusion of an ONERA OALT25 airfoil with periodic boundary conditions in the spanwise direction. Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations are first performed to assess the effect of the sweep angle. Spanwise flow structures are observed on these essentially 2D or 2.5D configurations, forming what has been named buffet cells. The 3D buffet frequency is correlated with the wavelength of these cells and the sweep angle. Then, Zonal Detached Eddy Simulations (ZDES) are carried out over small span and large span wings to provide numerical validation to the URANS simulations. These simulations are used to assess the capacity of hybrid RANS-LES methods to model the 3D effects involved in transonic buffet. At last, these simulations will provide insights into the complex physics involved in transonic buffet.

Keywords

Transonic buffet ZDES URANS 

Notes

Acknowledgements

Part of this work made use of the GENCI facilities (Grant DARI No. A0042A10423). This research was enabled in part by support provided by Compute Canada. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC/CRSNG).

References

  1. 1.
    Brion, V., Dandois, J., Abart, J.C., Paillart, P.: Experimental analysis of the shock dynamics on a transonic laminar airfoil. Prog. Flight Phys. 9, 365–386 (2017).  https://doi.org/10.1051/eucass/2016090365
  2. 2.
    Brunet, V., Deck, S.: Zonal-Detached Eddy simulation of transonic buffet on a civil aircraft type configuration. AIAA Paper 2008-4152 (2008).  https://doi.org/10.2514/6.2008-4152
  3. 3.
    Cambier, L., Heib, S., Plot, S.: The Onera elsA CFD software: Input from research and feedback from industry. Mech. Ind. 14(3), 159–174 (2013).  https://doi.org/10.1051/meca/2013.056
  4. 4.
    Dandois, J.: Experimental study of transonic buffet phenomenon on a 3D swept wing. Phys. Fluids 28(1), (2016).  https://doi.org/10.1063/1.4937426
  5. 5.
    Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005).  https://doi.org/10.2514/1.9885
  6. 6.
    Deck, S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26(6), 523–550 (2012).  https://doi.org/10.1007/s00162-011-0240-z
  7. 7.
    Fukushima, Y., Kawai, S.: Wall-Modeled Large-Eddy simulation of transonic airfoil buffet at high Reynolds number. AIAA J. 56(6), 1–18 (2018).  https://doi.org/10.2514/1.J056537
  8. 8.
    Garnier, E., Deck, S.: Large-Eddy Simulation of Transonic Buffet over a Supercritical Airfoil. In: Deville, M., Lê, T.H., Sagaut P. (eds.) Turbulence and Interactions, pp. 135–141. Springer, Berlin, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14139-3_16
  9. 9.
    Giannelis, N.F., Vio, G.A., Levinski, O.: A review of recent developments in the understanding of transonic shock buffet. Prog. Aerosp. Sci. 92, 39–84 (2017).  https://doi.org/10.1016/j.paerosci.2017.05.004
  10. 10.
    Goncalves, E., Houdeville, R.: Turbulence model and numerical scheme assessment for buffet computations. Int. J. Numer. Methods Fluids 46(11), 1127–1152 (2004).  https://doi.org/10.1002/fld.777
  11. 11.
    Grossi, F., Braza, M., Hoarau, Y.: Prediction of transonic buffet by delayed Detached-Eddy simulation. AIAA J. 52(10), 2300–2312 (2014).  https://doi.org/10.2514/1.j052873
  12. 12.
    Huang, J., Xiao, Z., Liu, J., Fu, S.: Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES. Sci. China Phys. Mech. Astron. 55(2), 260–271 (2012).  https://doi.org/10.1007/s11433-011-4601-9
  13. 13.
    Iovnovich, M., Raveh, D.E.: Reynolds-Averaged Navier-Stokes study of the Shock-Buffet instability mechanism. AIAA J. 50(4), 880–890 (2012).  https://doi.org/10.2514/1.j051329
  14. 14.
    Iovnovich, M., Raveh, D.E.: Numerical study of shock buffet on three-dimensional wings. AIAA J. 53(2), 449–463 (2015).  https://doi.org/10.2514/1.j053201
  15. 15.
    Ishida, T., Hashimoto, A., Ohmichi, Y., Aoyama, T., Takekawa, K.: Transonic Buffet Simulation over NASA-CRM by Unsteady-FaSTAR Code. AIAA Paper 2017-0494, (2017).  https://doi.org/10.2514/6.2017-0494
  16. 16.
    Ishida, T., Ishiko, K., Hashimoto, A., Aoyama, T., Takekawa, K.: Transonic buffet simulation over supercritical airfoil by unsteady-FaSTAR Code. AIAA Paper 2016-1310 (2016).  https://doi.org/10.2514/6.2016-1310
  17. 17.
    Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: Experimental study of shock oscillation over a transonic Supercritical profile. AIAA J. 47(9), 1985–1994 (2009).  https://doi.org/10.2514/1.30190
  18. 18.
    Koike, S., Ueno, M., Nakakita, K., Hashimoto, A.: Unsteady Pressure Measurement of transonic buffet on NASA common research model. AIAA Paper 2016-4044, (2016).  https://doi.org/10.2514/6.2016-4044
  19. 19.
    Ohmichi, Y., Ishida, T., Hashimoto, A.: Numerical investigation of transonic buffet on a three-dimensional wing using incremental mode decomposition. AIAA Paper 2017-1436.  https://doi.org/10.2514/6.2017-1436
  20. 20.
    Ribeiro, A.F., Singh, D., König, B., Fares, E., Zhang, R., Gopalakrishnan, P., Li, Y., Chen, H.: Buffet Simulations with a Lattice-Boltzmann based Transonic Solver. AIAA Paper 2017–1438, (2017).  https://doi.org/10.2514/6.2017-1438
  21. 21.
    Sartor, F., Timme, S.: Delayed Detached-Eddy simulation of shock buffet on half wing-body configuration. AIAA J. 55(4), 1230–1240 (2017).  https://doi.org/10.2514/1.J055186
  22. 22.
    Sugioka, Y., Nakakita, K., Asai, K.: Non-intrusive unsteady PSP technique for investigation of transonic buffetting. In: ICAS-2016 (2016)Google Scholar
  23. 23.
    Thiery, M., Coustols, E.: Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls. Int. J. Heat Fluid Flow 27(4), 661–670 (2006).  https://doi.org/10.1016/j.ijheatfluidflow.2006.02.013

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fédéric Plante
    • 1
    • 2
    Email author
  • Julien Dandois
    • 1
  • Éric Laurendeau
    • 2
  1. 1.DAAA, ONERAUniversité Paris SaclayMeudonFrance
  2. 2.Polytechnique MontréalMontréalCanada

Personalised recommendations