DDES and OES Simulations of a Morphing Airbus A320 Wing and Flap in Different Scales at High Reynolds

  • A. MaroufEmail author
  • N. Simiriotis
  • J. B. Tô
  • Y. Bmegaptche
  • Y. Hoarau
  • M. Braza
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


The present study concerns the use of unsteady numerical simulations by means of Navier Stokes Multi Block (NSMB) solver including both high order schemes and turbulence resolving methods. Firstly, this work attempts to highlight the role of the morphing applied to the supercritical Airbus A320 wing and flap in the trailing-edge for a Reduced Scale (RS) prototype at the clean position, this morphing includes a slight deformation of the trailing edge with a selected frequency and amplitude, which has an impact on the flow near the trailing edge and specially in the wake structures. This solution can transform the 3-dimensional chaotic flow into a 2-dimensional one by enhancing coherence of 2D structures rows of von Kármán vortices. In Addition, the highlift A320 wing-flap at the take-off position in Large-Scale (LS) configuration have been studied using advanced hybrid models DDES, the Organised Eddy Simulation OES and SST for the RANS regions as well as LES Smagorinsky model.


Morphing Flap Wing Frequency Vibration Hybrid models 


  1. 1.
    Jodin, G., Motta, V., Scheller, J., Duhayon, E., Doll, C., Rouchon, J.F., Braza, M.: Dynamics of hybrid morphing wing with active open loop vibrating trailing edge by time-resolved PIV and force measures. J. Fluids Struct. 74, 263–290 (2017)CrossRefGoogle Scholar
  2. 2.
    Scheller, J., Chinaud, M., Rouchon, J.F., Duhayon, E., Cazin, S., Marchal, M., Braza, M.: Trailing-edge dynamics of a morphing NACA0012 aileron at high Reynolds number by high-speed PIV. J. Fluids Struct. 55, 42–51 (2015)Google Scholar
  3. 3.
    Simiriotis, N., Jodin, G., Marouf, A., Hoarau, Y., Rouchon, J.F., Braza, M.: Electroactive morphing on a supercritical wing targeting improved aero-dynamic performance and flow control in high Reynolds numbers. In: 53rd 3AF International Conference on Applied Aerodynamics, 26–28 March 2018Google Scholar
  4. 4.
    Weishuang, L.U., Yun, T.I.A.N., Peiqing, L.I.U.: Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap. Chin. J. Aeronaut. 30(3), 988–1003 (2017)CrossRefGoogle Scholar
  5. 5.
    Hoarau, Y., Pena, D., Vos, J.B., Charbonier, D., Gehri, A., Braza, M., Deloze, T., Laurendeau, E.: Recent developments of the Navier Stokes Multi Block (NSMB) CFD solver. In: 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and AstronauticsGoogle Scholar
  6. 6.
    Bourguet, R., Braza, M., Harran, G., El Akoury, R.: Anisotropic organised Eddy simulation for the prediction of non-equilibrium turbulent flows around bodies. J. Fluids Struct. 24(8), 1240–1251 (2008)CrossRefGoogle Scholar
  7. 7.
    Spalart, P.R.: Detached-Eddy simulation. Ann. Rev. Fluid Mech. 41(1), 181–202 (2009).
  8. 8.
    Donea, J., Giuliani, S., Halleux, J.P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1), 689–723 (1982)Google Scholar
  9. 9.
    Spalart, P.R., Rumsey, C.L.: Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Marouf
    • 1
    • 3
    Email author
  • N. Simiriotis
    • 3
  • J. B. Tô
    • 3
  • Y. Bmegaptche
    • 3
  • Y. Hoarau
    • 2
  • M. Braza
    • 3
  1. 1.ICUBE, Unité Mixte C.N.R.S – Université de StrasbourgStrasbourgFrance
  2. 2.ICUBE—Strasbourg UniversityStrasbourgFrance
  3. 3.Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502 CNRS-INPT-UT3 Allée du prof. Camille SoulaToulouseFrance

Personalised recommendations