Advertisement

Investigation of Structured and Unstructured Grid Topology and Resolution Dependence for Scale-Resolving Simulations of Axisymmetric Detaching-Reattaching Shear Layers

  • Jan-Erik SchumannEmail author
  • Volker Hannemann
  • Klaus Hannemann
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

The sensitivity to grid changes of a detaching-reattaching shear layer flow over a generic space launch vehicle geometry is investigated with Improved Delayed Detached Eddy Simulation (IDDES). First and second order statistical moments of the flow are compared and show good agreement with experimental and numerical data from literature. A sufficient axial resolution in the initial shear layer region is found to be crucial for an accurate capturing of the spectral content of the flow. Results on a grid with prismatic elements compare well to those on grids with hexahedral elements. A finer circumferential resolution changes the flow field drastically and leads to a merging of the first and second recirculation region, also affecting the pressure field and spectral features. Additionally, an absolute and a directional grid sensors are used that are found to be well suited to support anisotropic grid refinement.

Keywords

IDDES Axisymmetric Space launch vehicle Grid resolution Grid sensor 

Notes

Acknowledgements

Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under grant: pr62po. Financial support has been provided by the German Research Foundation (Deutsche Forschungsgemeinschaft—DFG) in the framework of the Sonderforschungsbereich Transregio 40.

References

  1. 1.
    Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19(6), 065,103 (2007)CrossRefGoogle Scholar
  2. 2.
    Deprés, D., Reijasse, P., Dussauge, J.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)CrossRefGoogle Scholar
  3. 3.
    Fertig, M., Schumann, J.E., Hannemann, V., Eggers, T., Hannemann, K.: Efficient analysis of transonic base flows employing hybrid URANS/LES methods. In: C. Stemmer, N.A. Adams, O.J. Haidn, R. Radespiel, T. Sattelmayer, W. Schröder, B. Weigand (eds.) SFB/TRR 40 Annual Report 2017. Lehrstuhl für Aerodynamik und Strömungstechnik, Technische Universität München (2017). http://www.sfbtr40.de/index.php?id=annualreports
  4. 4.
    Horchler, T., Oßwald, K., Hannemann, V., Hannemann, K.: Hybrid RANS-LES study of transonic flow in the wake of a generic space launch vehicle. In: Progress in Hybrid RANS-LES Modelling: Papers Contributed to the 6th Symposium on Hybrid RANS-LES Methods, 26–28 September 2016, Strasbourg, France, vol. 137, p. 291. Springer, Berlin (2018)Google Scholar
  5. 5.
    Kok, J.: A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids. J. Comput. Phys. 228(18), 6811–6832 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Löwe, J., Probst, A., Knopp, T., Kessler, R.: A low-dissipation low-dispersion second-order scheme for unstructured finite-volume flow solvers. In: 53rd AIAA Aerospace Sciences Meeting, p. 0815 (2015)Google Scholar
  7. 7.
    Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody equipped with two boosters. In: 25th AIAA Applied Aerodynamics Conference, p. 4564 (2007)Google Scholar
  8. 8.
    Probst, A., Reuß, S.: Progress in scale-resolving simulations with the DLR-TAU code. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV (2016)Google Scholar
  9. 9.
    Reuß, S., Knopp, T., Probst, A., Orlt, M.: Assessment of local LES-resolution sensors for hybrid RANS/LES simulations. In: Progress in Hybrid RANS-LES Modelling, pp. 93–103. Springer, Berlin (2015)Google Scholar
  10. 10.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. ECCOMAS CFD (2006)Google Scholar
  11. 11.
    Spalart, P.: Young-persons guide to detached-eddy simulation grids. NASA. Technical report, CR-2001-211032): 1–18 (2001)Google Scholar
  12. 12.
    Toosi, S., Larsson, J.: Anisotropic grid-adaptation in large eddy simulations. Comput. Fluids 156, 146–161 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Weiss, P.É., Deck, S., Robinet, J.C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids 21(7), 075,103 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jan-Erik Schumann
    • 1
    Email author
  • Volker Hannemann
    • 1
  • Klaus Hannemann
    • 1
  1. 1.German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Spacecraft DepartmentGoettingenGermany

Personalised recommendations