Advertisement

The Sinai Light Show: Using Science to Tune Fractal Aesthetics

  • B. Van Dusen
  • B. C. Scannell
  • M. E. Sereno
  • B. Spehar
  • R. P. TaylorEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Nature’s beauty is profound. To better understand the source of this beauty, here we will focus on the aesthetic impact of fractals. Fractals are patterns that repeat at increasingly fine size scales and they are prevalent throughout nature’s scenery (Mandelbrot 1982). Examples include lightning, clouds, trees, rivers and mountains. Furthermore, they have permeated cultures spanning across many centuries and continents, ranging from Hellinic friezes (300 B.C.E) to Jackson Pollock’s poured paintings (1950s) (Taylor et al. 1999, 2007, 2018). We will discuss how science can be used to determine the origin of fractal aesthetics and also to generate patterns that maximize this aesthetic experience.

Notes

Acknowledgements

We thank our collaborators Alex Bies, Cooper Boydston, Colin Clifford, Caroline Hagerhall and Arthur Juliani for useful discussions. This work was supported by an Australian Research Council grant DP120103659 to BS and RPT.

References

  1. Abbott, A.: Fractals and art: in the hands of the master. Nature 439, 648 (2006)ADSCrossRefGoogle Scholar
  2. Abboushi, B., Elzeyadi, I., Taylor, R.P., Sereno, M.E.: Fractals in architecture: the visual interest and mood response to projected fractal light patterns in interior spaces. J. Environ. Psychol. 61, 57–70 (2018)CrossRefGoogle Scholar
  3. Aks, D., Sprott, J.: Quantifying aesthetic preference for chaotic patterns. Empirical Stud. Arts 14, 1–16 (1996)CrossRefGoogle Scholar
  4. Bies, A.J., Wekselblatt, J., Boydston, C.R., Taylor, R.P., Sereno, M.E.: The effects of visual scene complexity on human visual cortex. Neuroscience meeting planner. Society for Neuroscience, Chicago (2015)Google Scholar
  5. Bies, A., Blanc-Golhammer, D.R., Boydston, C.R., Taylor, R.P., Sereno, M.E.: The aesthetic response to exact fractals driven by physical complexity. Front. Human Neurosci. 10, 201 (2016a)CrossRefGoogle Scholar
  6. Bies, A.J., Kikumoto, A., Boydston, C.R., Greenfield, A., Chauvin, K., Taylor, R.P., et al.: Percepts from noise patterns: the role of fractal dimension in object pareidolia. Vision sciences society meeting planner. Vision Sciences Society, St. Pete Beach, Florida (2016b)CrossRefGoogle Scholar
  7. Boon, J.P., Casti, J., Taylor, R.P.: Artistic Forms and Complexity. J. Nonlinear Dyn. Psychol. Life Sci. 15, 265–283 (2011)MathSciNetGoogle Scholar
  8. Cutting, J.E., Garvin, J.J.: Fractal curves and complexity. Percept. Psychophys. 42, 365–370 (1987)CrossRefGoogle Scholar
  9. Fairbanks, M.S., Taylor, R.P.: Scaling analysis of spatial and temporal patterns: from the human eye to the foraging albatross. In: Non-linear Dynamical Analysis for the Behavioral Sciences Using Real Data. Taylor and Francis Group, Boca Raton (2011)Google Scholar
  10. Field, D.J., Brady, N.: Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Res. 37, 3367–3383 (1997)CrossRefGoogle Scholar
  11. Geake, J., Landini, G.: Individual differences in the perception of fractal curves. Fractals 5, 129–143 (1997)zbMATHCrossRefGoogle Scholar
  12. Hagerhall, C.M., Purcell, T., Taylor, R.P.: Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. J. Environ. Psychol. 24, 247–255 (2004)CrossRefGoogle Scholar
  13. Hagerhall, C.M., Laike, T., Taylor, R.P., Küller, M., Küller, R., Martin, T.P.: Investigation of EEG response to fractal patterns. Perception 37, 1488–1494 (2008)CrossRefGoogle Scholar
  14. Hagerhall, C.M., Laike, T., Küller, M., Marcheschi, E., Boydston, C., Taylor, R.P.: Human physiological benefits of viewing nature: EEG response to exact and statistical fractal patterns. J. Nonlinear Dyn. Psychol. Life Sci. 19, 1–12 (2015)Google Scholar
  15. Juliani, A.W., et al.: Navigation performance in virtual environments varies with fractal dimension of landscape. J. Environ. Psychol. 2016(47), 155–165 (2016)CrossRefGoogle Scholar
  16. Knill, D.C., Field, D., Kersten, D.: Human discrimination of fractal images. J. Opt. Soc. Am. 77, 1113–1123 (1990)CrossRefGoogle Scholar
  17. Kolb, B., Whishaw, I.Q.: Fundamentals of Human Neuropsychology. Worth Publishers, New York (2003)Google Scholar
  18. Mandelbrot, B.B.: The fractal geometry of nature. WH Freedman, New York (1982)zbMATHGoogle Scholar
  19. Marlow, C.A., Taylor, R.P., Martin, T.P., Scannell, B.C., Linke, H., Fairbanks, M.S.: Unified model of fractal conductance fluctuations for diffusive and ballistic semiconductor devices. Phys. Rev. B 73, 195318 (2006)ADSCrossRefGoogle Scholar
  20. Marlow, C.A., Viskontas, I.V., Matlin, A., Boydston, C., Boxer, A., Taylor, R.P.: Temporal structure of human gaze dynamics is invariant during free viewing. PLoS ONE 10, e0139379 (2015)CrossRefGoogle Scholar
  21. Moon, P., Murday, J., Raynor, S., Schirillo, J., Fairbanks, M.S., Taylor, R.P.: Fractal images induce fractal pupil dilations. Int. J. Psychophysiol. 93, 316–321 (2014)Google Scholar
  22. Pilgrim, I., Taylor, R.P.: Fractal analysis of time series data sets: methods and challenges. In: Fractal Analysis. IntechOpen (2018). ISBN 978-953-51-6762-4Google Scholar
  23. Sinai, Y.G.: On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Dokl. Akad. Nauk SSSR 153, 1261–1264 (1963)MathSciNetGoogle Scholar
  24. Spehar, B., Taylor, R.P.: Fractals in art and nature: why do we like them? SPIE Electron. Imaging 865, 1–18 (2013)Google Scholar
  25. Spehar, B., Clifford, C., Newell, B., Taylor, R.P.: Universal aesthetic of fractals. Chaos Graph. 37, 813–820 (2003)Google Scholar
  26. Spehar, B., Wong, S., van de Klundert, S., Lui, J., Clifford, C.W.G., Taylor, R.P.: Beauty and the beholder: the role of visual sensitivity in visual preference. Front. Human Neurosci. 9, 1–12 (2015)CrossRefGoogle Scholar
  27. Spehar, B., Walker, N., Taylor, R.P.: Taxonomy of individual variations in aesthetic response to fractal patterns. Front. Human Neurosci. 10, 1–18 (2016)CrossRefGoogle Scholar
  28. Street, N., Forsythe, A., Reilly, R.G., Taylor, R.P., Boydston, C., Helmy, M.S.: A complex story: universal preference vs. individual differences shaping aesthetic response to fractals patterns? Front. Human Neurosci. 10, 213 (2016)Google Scholar
  29. Taylor, R.P.: The role of surface gate technology for AlGaAs/GaAs Nanostructures. J. Nanotechnol. 5, 183 (1994)ADSCrossRefGoogle Scholar
  30. Taylor, R.P.: Splashdown. New Sci. 2144(30–3), 1 (1998)MathSciNetGoogle Scholar
  31. Taylor, R.P.: Order in Pollock’s chaos. Sci. Am. 287, 116 (2002)CrossRefGoogle Scholar
  32. Taylor, R.P.: Fractal expressionism—where art meets science. In: Art and Complexity, pp. 117–144 (2003)CrossRefGoogle Scholar
  33. Taylor, R.P.: Reduction of physiological stress using fractal art and architecture. Leonardo 39, 245–251 (2006)CrossRefGoogle Scholar
  34. Taylor, R.P.: Reflecting the impossible. Nature 460, 462 (2009)ADSCrossRefGoogle Scholar
  35. Taylor, R.P.: Across the cultural divide. Nature 463, 431 (2010)ADSCrossRefGoogle Scholar
  36. Taylor, R.P.: The art and science of foam bubbles. J. Nonlinear Dyn. Psychol. Life Sci. 15, 129–135 (2011)Google Scholar
  37. Taylor, R.P., Spehar, B.: Fractal fluency: an intimate relationship between the brain and processing of fractal stimuli. In: The Fractal Geometry of the Brain. Springer, New York (2016)Google Scholar
  38. Taylor, R.P., Sprott, J.C.: Biophilic fractals and the visual journey of organic Screen-savers. J. Non-linear Dyn. Psychol. Life Sci. 12, 117–129 (2008)Google Scholar
  39. Taylor, R.P., Micolich, A.P., Newbury, R., Fromhold, T.M.: Correlation analysis of self-similarity in semiconductor billiards. Phys. Rev. B Rapid Commun. 56, R12733 (1997a)ADSCrossRefGoogle Scholar
  40. Taylor, R.P., Newbury, R., Sachrajda, A.S., Feng, Y., Coleridge, P.T., Dettmann, C., Zhu, N., Guo, H., Delage, A., Kelly, P.J., Wasilewski, Z.: Self-similar magnetoresistance in a semiconductor Sinai billiard. Phys. Rev. Lett. 78, 1952 (1997b)ADSCrossRefGoogle Scholar
  41. Taylor, R.P., Micolich, A.P., Jonas, D.: Fractal analysis of Pollock’s drip paintings. Nature 399, 422 (1999)ADSCrossRefGoogle Scholar
  42. Taylor, R.P., Micolich, A.P., Jonas, D.: The construction of fractal drip paintings. Leonardo 35, 203 (2002)CrossRefGoogle Scholar
  43. Taylor, R.P., Newbury, R., Micolich, A.P., Fromhold, T.M., Linke, H., Davies, A.G., Martin, T.P., Marlow, C.: A review of fractal conductance fluctuations in ballistic semiconductor devices. In: Bird, J.P. (ed.) Electron Transport in Quantum Dots. Kluwer Academic/Plenum (2003)Google Scholar
  44. Taylor, R.P., Guzman, R., Martin, T.M., Hall, G., Micolich, A.P., Jonas, D., Scannell, B.C., Fairbanks, M.S., Marlow, C.A.: Authenticating Pollock paintings with fractal geometry. Pattern Recogn. Lett. 28, 695–702 (2007)CrossRefGoogle Scholar
  45. Taylor, R.P., Spehar, B., von Donkelaar, P., Hagerhall, C.M.: Perceptual and physiological responses to Jackson Pollock’s fractals. Front. Human Neurosci. 5, 1–13 (2011)CrossRefGoogle Scholar
  46. Taylor, R.P., et al.: Seeing shapes in seemingly random spatial patterns: fractal analysis of Rorschach inkblots. PLOS one 12, e0171289 (2017)CrossRefGoogle Scholar
  47. Taylor, R.P., Juliani, A.W., Bies, A.J., Spehar, B., Sereno, M.E.: The implications of fractal fluency for bioinspired architecture. J. Biourbanism 6, 23–40 (2018)Google Scholar
  48. Ulrich, R.S.: Natural versus urban scenes: some psychophysiological effects. Environ. Behav. 13, 523–556 (1981)CrossRefGoogle Scholar
  49. Ulrich, R.S.: Biophilia, biophobia and natural landscapes. In: The Biophilia Hypothesis. Island Press, Washington DC (1993)Google Scholar
  50. Ulrich, R.S., Simons, R.F.: Recovery from stress during exposure to everyday outdoor environments. Proc. EDRA 17, 115–122 (1986)Google Scholar
  51. Van Dusen, B., Taylor, R.P.: The art and science of hyperbolic tesselations. J. Nonlinear Dyn. Psychol. Life Sci. 17, 317–323 (2013)Google Scholar
  52. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. Van Dusen
    • 1
  • B. C. Scannell
    • 2
  • M. E. Sereno
    • 2
  • B. Spehar
    • 3
  • R. P. Taylor
    • 2
    Email author
  1. 1.Department of Science EducationCalifornia State University at ChicoChicoUSA
  2. 2.Department of PsychologyUniversity of OregonEugeneUSA
  3. 3.School of PsychologyUniversity of New South Wales SydneyKensingtonAustralia

Personalised recommendations