Advertisement

Hardware/Software Self-adaptation in CPS: The CERBERO Project Approach

  • Francesca Palumbo
  • Tiziana FanniEmail author
  • Carlo Sau
  • Alfonso Rodríguez
  • Daniel Madroñal
  • Karol Desnos
  • Antoine Morvan
  • Maxime Pelcat
  • Claudio Rubattu
  • Raquel Lazcano
  • Luigi Raffo
  • Eduardo de la Torre
  • Eduardo Juárez
  • César Sanz
  • Pablo Sánchez de Rojas
Conference paper
  • 327 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11733)

Abstract

Cyber-Physical Systems (CPS) are interconnected devices, reactive and dynamic to sensed external and internal triggers. The H2020 CERBERO EU Project is developing a design environment composed by modelling, deployment and verification tools for adaptive CPS. This paper focuses on its efficient support for run-time self-adaptivity.

Keywords

Cyber-Physical Systems Self-adaptivity HW reconfiguration HW monitoring Run-time management 

Notes

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732105. The authors would like to thank the Spanish Ministry of Education, Culture and Sport for its support under the FPU grant program.

References

  1. 1.
    CERBERO Deliverable D3.4 - CERBERO Modelling of KPI. https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D3.4.pdf
  2. 2.
    CERBERO Deliverable D6.8 - Planetary Exploration Demonstrator. https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D6.8.pdf
  3. 3.
    Performance API (2019). http://icl.utk.edu/papi/
  4. 4.
    Bosse, T., et al.: Developing ePartners for human-robot teams in space based on ontologies and formal abstraction hierarchies. J. Agent-Orient. Softw. Eng. 5(4), 366–398 (2017)CrossRefGoogle Scholar
  5. 5.
    Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9_3CrossRefGoogle Scholar
  6. 6.
    Desnos, K., et al.: PiMM: parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: SAMOS (2013)Google Scholar
  7. 7.
    Fanni, T., et al.: Multi-grain reconfiguration for advanced adaptivity in cyber-physical systems. In: ReConFig 2018, December 2018Google Scholar
  8. 8.
    Hartenstein, R.: Coarse grain reconfigurable architecture (embedded tutorial). In: Conference of the Asia and South Pacific Design Automation (2001)Google Scholar
  9. 9.
    Heulot, J., et al.: SPIDER: a synchronous parameterized and interfaced dataflow-based RTOS for multicore DSPs. In: EDERC (2014)Google Scholar
  10. 10.
    Kim, K., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)CrossRefGoogle Scholar
  11. 11.
    Leeuwen, C.J.V., et al.: Model-based architecture optimization for self-adaptive networked signal processing systems. In: SASO (2014)Google Scholar
  12. 12.
    Lombardo, M., et al.: Power management techniques in an FPGA-based WSN node for high performance applications. In: ReCoSoC (2012)Google Scholar
  13. 13.
    Macías-Escrivá, F.D., et al.: Self-adaptive systems: a survey of current approaches, research challenges and applications. Expert Syst. Appl. 40(18), 7267–7279 (2013)CrossRefGoogle Scholar
  14. 14.
    Madroñal, D., Fanni, T.: Run-time performance monitoring of hardware accelerators: POSTER. In: CF (2019)Google Scholar
  15. 15.
    Madroñal, D., et al.: Automatic instrumentation of dataflow applications using PAPI. In: CF (2018)Google Scholar
  16. 16.
    Masin, M., et al.: Cross-layer design of reconfigurable cyber-physical systems. In: DATE, March 2017Google Scholar
  17. 17.
    Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S.: Consistency of property specification patterns with boolean and constrained numerical signals. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 383–398. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77935-5_26CrossRefGoogle Scholar
  18. 18.
    Palumbo, F., et al.: Power-awarness in coarse-grained reconfigurable multi-functional architectures: a dataflow based strategy. J. Signal Process. Syst. 87(1), 81–106 (2017).  https://doi.org/10.1007/s11265-016-1106-9CrossRefGoogle Scholar
  19. 19.
    Palumbo, F., et al.: CERBERO: cross-layer model-based framework for multi-objective design of reconfigurable systems in uncertain hybrid environments. In: CF (2019)Google Scholar
  20. 20.
    Pelcat, M., et al.: PREESM: a dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: EDERC (2014)Google Scholar
  21. 21.
    Pelcat, M., et al.: Reproducible evaluation of system efficiency with a model of architecture: from theory to practice. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 37, 2050–2063 (2017)CrossRefGoogle Scholar
  22. 22.
    Ren, R., et al.: Energy estimation models for video decoders: reconfigurable video coding-CAL case-study. IET Comput. Digit. Tech. 9(1), 3–15 (2014)CrossRefGoogle Scholar
  23. 23.
    Rodríguez, A., et al.: FPGA-based high-performance embedded systems for adaptive edge computing in cyber-physical systems: the ARTICo3 framework. Sensors 18(6), 1877 (2018).  https://doi.org/10.3390/s18061877CrossRefGoogle Scholar
  24. 24.
    Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in self-adaptive software. Softw. Pract. Exper. 42(2), 211–233 (2012)CrossRefGoogle Scholar
  25. 25.
    Suriano, L., et al.: A unified hardware/software monitoring method for reconfigurable computing architectures using PAPI. In: ReCoSoC (2018)Google Scholar
  26. 26.
    Zadorojniy, A., et al.: Algorithms for finding maximum diversity of design variables in multi-objective optimization. In: CSER (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesca Palumbo
    • 1
  • Tiziana Fanni
    • 2
    Email author
  • Carlo Sau
    • 2
  • Alfonso Rodríguez
    • 3
  • Daniel Madroñal
    • 3
  • Karol Desnos
    • 4
  • Antoine Morvan
    • 4
  • Maxime Pelcat
    • 4
    • 5
  • Claudio Rubattu
    • 1
    • 4
  • Raquel Lazcano
    • 3
  • Luigi Raffo
    • 2
  • Eduardo de la Torre
    • 3
  • Eduardo Juárez
    • 3
  • César Sanz
    • 3
  • Pablo Sánchez de Rojas
    • 6
  1. 1.Università degli Studi di SassariSassariItaly
  2. 2.Università degli Studi di CagliariCagliariItaly
  3. 3.Universidad Politécnica de MadridMadridSpain
  4. 4.IETR, UMR CNRS 6164/INSA RennesRennesFrance
  5. 5.Institut Pascal UMR CNRS 6602AubièreFrance
  6. 6.Thales Alenia Space EspañaMadridSpain

Personalised recommendations