Advertisement

Implementation of Parallel Algorithms

  • Sergei Kurgalin
  • Sergei Borzunov
Chapter

Abstract

In many cases, the development of an efficient parallel algorithm for the solution of some problem requires new ideas and methods in comparison with the creation of a sequential version of the algorithm. Examples are the practically important problems of searching for a target element in a data structure and of computation of the value of an algebraic expression. The present chapter discusses algorithms for array element summation and data sorting.

References

  1. 1.
    Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentice Hall, Upper Saddle River (1989)Google Scholar
  2. 10.
    Breshears, C.: The Art of Concurrency. O’Reilly, Beijing (2009)Google Scholar
  3. 11.
    Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  4. 18.
    Dow, M.: Transposing a matrix on a vector computer. Parallel Comput. 21, 1997–2005 (1995)MathSciNetCrossRefGoogle Scholar
  5. 30.
    Hibbard, T.N.: An empirical study of minimal storage sorting. Commun. ACM 6(5), 206–213 (1963)CrossRefGoogle Scholar
  6. 34.
    Knuth, D.E.: The Art of Computer Programming, vol. 3. Seminumerical Algorithms, 2nd edn. Addison-Wesley, Boston (1998)Google Scholar
  7. 38.
    Kurgalin, S., Borzunov, S.: The Discrete Math Workbook: A Companion Manual for Practical Study. Texts in Computer Science. Springer, Berlin (2018)CrossRefGoogle Scholar
  8. 39.
    Lagarias, J.C. (ed.): The Ultimate Challenge: The 3x+1 Problem. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  9. 41.
    Linux Man-Pages Project: Linux Programmer’s Manual, Drand48_r(3) (2018). http://man7.org/linux/man-pages/man3/drand48_r.3.html
  10. 42.
    McConnell, J.J.: Analysis of Algorithms: An Active Learning Approach, 2nd edn. Jones and Bartlett, Burlington (2008)Google Scholar
  11. 45.
    Miller, R., Boxer, L.: Algorithms Sequential and Parallel: A Unified Approach, 3rd edn. Cengage Learning, Boston (2013)Google Scholar
  12. 52.
    Ortega, J.M.: Introduction to Parallel and Vector Solution of Linear Systems. Frontiers in Computer Science. Springer, Berlin (1988)CrossRefGoogle Scholar
  13. 53.
    Pacheco, P.S.: An Introduction to Parallel Programming. Elsevier, Amsterdam (2011)Google Scholar
  14. 56.
    Pratt, V.R.: Shellsort and Sorting Networks. Outstanding Dissertations in the Computer Sciences. Garland, New York (1979)Google Scholar
  15. 57.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  16. 58.
    Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education, Boston (2004)Google Scholar
  17. 65.
    Sedgewick, R.: A new upper bound for shellsort. J. Algorithms 7(2), 159–173 (1986)MathSciNetCrossRefGoogle Scholar
  18. 66.
    Sedgewick, R.: Algorithms in C, 3rd edn. Addison-Wesley, Boston (1998)zbMATHGoogle Scholar
  19. 68.
    Shell, D.L.: A high-speed sorting procedure. Commun. ACM 2(7), 30–32 (1959)CrossRefGoogle Scholar
  20. 77.
    Voevodin, V.V.: Mathematical Foundations of Parallel Computing. World Scientific Series in Computer Science, vol. 33. World Scientific, Singapore (1992)Google Scholar
  21. 81.
    Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergei Kurgalin
    • 1
  • Sergei Borzunov
    • 1
  1. 1.Department of Digital TechnologiesVoronezh State UniversityVoronezhRussia

Personalised recommendations