Modeling and Simulation Approaches for the Production of Functional Parts in Micro Scale

  • Andreas LuttmannEmail author
  • Mischa Jahn
  • Alfred Schmidt
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 30)


In this paper, simulation approaches for the partial melting of metallic workpieces in micro scale are presented. The underlying model considers heat transport in the whole workpiece, the solid-liquid phase transition assuming a sharp interface and the fluid flow in the liquid part including surface tension effects. Depending on whether the solid-liquid interface is handled either by an interface-tracking or an interface-capturing approach, two different numerical schemes based on an ALE finite element method are presented. A crucial aspect for both methods is the geometrical evolution of the solid-liquid-gas triple junction due to the non-material movement of the solid-liquid interface. Yielding mutual advantages and disadvantages, both methods can be used in alternation in a combined approach. Numerical results are shown for melting the tip of a thin steel wire by a laser beam.



The authors gratefully acknowledge the financial support by the DFG (German Research Foundation) for the subproject A3 within the Collaborative Research Center SFB 747 Mikrokaltumformen—Prozesse, Charakterisierung, Optimierung.


  1. 1.
    Bänsch, E.: Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88(2), 203–235 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bänsch, E., Paul, J., Schmidt, A.: An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface. Int. J. Numer. Methods Fluids 71(10), 1282–1296 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Elliot, C.M.: On the Finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the stefan problem. IMA J. Numer. Anal. 1(1), 115–125 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Luttmann, A.: Modellierung und Simulation von Prozessen mit fest-flüssig Phasenübergang und freiem Kapillarrand. Dissertation. Universität Bremen (2018)Google Scholar
  5. 5.
    Rippel, D., Schattmann, C., Jahn, M., Lütjen, M., Schmidt, A.: Application of cause-effect-networks for the process planning in laser rod end melting. In: MATEC Web of Conferences, vol. 190, p. 15005 (2018)Google Scholar
  6. 6.
    Vollertsen, F.: Categories of size effects. Prod. Eng. 2(4), 377–383 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Zentrum für TechnomathematikUniversität BremenBremenGermany

Personalised recommendations