Stability Preserving Model Order Reduction for District Heating Networks

  • Markus ReinEmail author
  • Jan Mohring
  • Tobias Damm
  • Axel Klar
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 30)


Stability is one of the key properties when modeling a physical system on all model hierarchies. We focus on the case of hyperbolic differential algebraic equations dominated by advection at the example of district heating networks. For the transport dynamics, a solution of the corresponding Lyapunov inequality is presented ensuring stability. At the example of an existing network, we numerically demonstrate that stability also translates to the reduced order model (ROM).



We acknowledge the financial support by the Federal Ministry for Economic Affairs and Energy of Germany in the framework of the project “Verbundvorhaben:EnEff:Wärme - DYNEEF: Dynamische Netzsimulation zur Effizienzsteigerung und Emissionsreduzierung in der Fernwärmeerzeugung - Schwerpunkt: Optimierung” (Förderkennzeichen: 03ET1346B).


  1. 1.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gugercin, S., Polyuga, R.V., Beattie, C.A., van der Schaft, A.: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9), 1963–1974 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM Math. Model. Numer. Anal. 42, 277–302 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Polyuga, R.V., van der Schaft, A.: Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46(4), 665–672 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rein, M., Mohring, J., Damm, T., Klar, A.: Model order reduction of hyperbolic systems at the example of district heating networks (2019). arXiv:1903.03342v1Google Scholar
  7. 7.
    Rezaie, B., Rosen, M.A.: District heating and cooling: review of technology and potential enhancements. Appl. Energy 93, 2–10 (2012)CrossRefGoogle Scholar
  8. 8.
    van der Schaft, A.J., Maschke, B.M.: Port-Hamiltonian systems on graphs. SICON 51(2), 906–937 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Markus Rein
    • 1
    Email author
  • Jan Mohring
    • 2
  • Tobias Damm
    • 1
  • Axel Klar
    • 1
  1. 1.TU KaiserslauternKaiserslauternGermany
  2. 2.Fraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany

Personalised recommendations