Experimental Validation of a Mathematical Model for Laser-Induced Thermotherapy

  • Christian LeithäuserEmail author
  • Frank Hübner
  • Babak Bazrafshan
  • Norbert Siedow
  • Thomas J. Vogl
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 30)


Laser-induced thermotherapy (LITT) is used to treat liver cancer by inserting a laser applicator into the tumor and applying radiation to heat and destroy it. A mathematical model for the simulation of LITT is compared to experimental results with ex-vivo pig livers.



The authors acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) for the project In-vitro Temperaturbestimmung und Computersimulation der Temperaturverteilung zur optimalen Planung und Steuerung der laserinduzierten Thermotherapie (LITT) (grant no.: VO 479/10-3 and SI 1289/1-3) and by the Federal Ministry of Education and Research (BMBF) of Germany in the framework of the project proMT: Prognostische modellbasierte online MR-Thermometrie bei minimalinvasiver Thermoablation zur Behandlung von Lebertumoren (grant no.: 05M16AMA).


  1. 1.
    Bazrafshan, B., Koujan, A., Hübner, F., Leithäuser, C., Siedow, N., Vogl, T.J.: A thermometry software tool for monitoring laser-induced interstitial thermotherapy. Biomed. Eng. 64(4), 449–457 (2019)CrossRefGoogle Scholar
  2. 2.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 3.
    Fasano, A., Hömberg, D., Naumov, D.: On a mathematical model for laser-induced thermotherapy. Appl. Math. Model. 34(12), 3831–3840 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Geuzaine, C.: GetDP: a general finite-element solver for the de Rham complex. In: Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, vol. 7, pp. 1010603–1010604. Wiley, Hoboken (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Giering, K., Minet, O., Lamprecht, I., Müller, G.: Review of thermal properties of biological tissues. In: Müller, G.J., Roggan, A. (eds.) Laser-Induced Interstitial Thermotherapy, pp. 45–65. SPIE Press, Bellingham (1995)Google Scholar
  6. 6.
    Hübner, F., Leithäuser, C., Bazrafshan, B., Siedow, N., Vogl, T.J.: Validation of a mathematical model for laser-induced thermotherapy in liver tissue. Lasers Med. Sci. 32(6), 1399–1409 (2017)CrossRefGoogle Scholar
  7. 7.
    Puccini, S., Bär, N.-K., Bublat, M., Kahn, T., Busse, H.: Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (litt). Magn. Reson. Med. 49(2), 351–362 (2003)CrossRefGoogle Scholar
  8. 8.
    Roggan, A., Dorschel, K., Minet, O., Wolff, D., Muller, G.: The optical properties of biological tissue in the near infrared wavelength range. In: Laser-induced Interstitial Therapy, pp. 10–44. SPIE Press, Bellingham (1995)Google Scholar
  9. 9.
    Schwarzmaier, H.-J., Yaroslavsky, I.V., Yaroslavsky, A.N., Fiedler, V., Ulrich, F., Kahn, T.: Treatment planning for mri-guided laser-induced interstitial thermotherapy of brain tumors—the role of blood perfusion. J. Magn. Reson. Imaging 8(1), 121–127 (1998)CrossRefGoogle Scholar
  10. 10.
    Siedow, N., Leithäuser, C.: Mathematical modeling for laser-induced thermotherapy in liver tissue. In: European Consortium for Mathematics in Industry. Springer, Berlin (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Leithäuser
    • 1
    Email author
  • Frank Hübner
    • 2
  • Babak Bazrafshan
    • 2
  • Norbert Siedow
    • 1
  • Thomas J. Vogl
    • 2
  1. 1.Fraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany
  2. 2.Institut für Diagnostische und Interventionelle RadiologieFrankfurtGermany

Personalised recommendations