Progress in Industrial Mathematics at ECMI 2018 pp 231-237 | Cite as
Experimental Validation of a Mathematical Model for Laser-Induced Thermotherapy
Abstract
Laser-induced thermotherapy (LITT) is used to treat liver cancer by inserting a laser applicator into the tumor and applying radiation to heat and destroy it. A mathematical model for the simulation of LITT is compared to experimental results with ex-vivo pig livers.
Notes
Acknowledgements
The authors acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) for the project In-vitro Temperaturbestimmung und Computersimulation der Temperaturverteilung zur optimalen Planung und Steuerung der laserinduzierten Thermotherapie (LITT) (grant no.: VO 479/10-3 and SI 1289/1-3) and by the Federal Ministry of Education and Research (BMBF) of Germany in the framework of the project proMT: Prognostische modellbasierte online MR-Thermometrie bei minimalinvasiver Thermoablation zur Behandlung von Lebertumoren (grant no.: 05M16AMA).
References
- 1.Bazrafshan, B., Koujan, A., Hübner, F., Leithäuser, C., Siedow, N., Vogl, T.J.: A thermometry software tool for monitoring laser-induced interstitial thermotherapy. Biomed. Eng. 64(4), 449–457 (2019)CrossRefGoogle Scholar
- 2.Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2004)CrossRefGoogle Scholar
- 3.Fasano, A., Hömberg, D., Naumov, D.: On a mathematical model for laser-induced thermotherapy. Appl. Math. Model. 34(12), 3831–3840 (2010)MathSciNetCrossRefGoogle Scholar
- 4.Geuzaine, C.: GetDP: a general finite-element solver for the de Rham complex. In: Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, vol. 7, pp. 1010603–1010604. Wiley, Hoboken (2008)MathSciNetCrossRefGoogle Scholar
- 5.Giering, K., Minet, O., Lamprecht, I., Müller, G.: Review of thermal properties of biological tissues. In: Müller, G.J., Roggan, A. (eds.) Laser-Induced Interstitial Thermotherapy, pp. 45–65. SPIE Press, Bellingham (1995)Google Scholar
- 6.Hübner, F., Leithäuser, C., Bazrafshan, B., Siedow, N., Vogl, T.J.: Validation of a mathematical model for laser-induced thermotherapy in liver tissue. Lasers Med. Sci. 32(6), 1399–1409 (2017)CrossRefGoogle Scholar
- 7.Puccini, S., Bär, N.-K., Bublat, M., Kahn, T., Busse, H.: Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (litt). Magn. Reson. Med. 49(2), 351–362 (2003)CrossRefGoogle Scholar
- 8.Roggan, A., Dorschel, K., Minet, O., Wolff, D., Muller, G.: The optical properties of biological tissue in the near infrared wavelength range. In: Laser-induced Interstitial Therapy, pp. 10–44. SPIE Press, Bellingham (1995)Google Scholar
- 9.Schwarzmaier, H.-J., Yaroslavsky, I.V., Yaroslavsky, A.N., Fiedler, V., Ulrich, F., Kahn, T.: Treatment planning for mri-guided laser-induced interstitial thermotherapy of brain tumors—the role of blood perfusion. J. Magn. Reson. Imaging 8(1), 121–127 (1998)CrossRefGoogle Scholar
- 10.Siedow, N., Leithäuser, C.: Mathematical modeling for laser-induced thermotherapy in liver tissue. In: European Consortium for Mathematics in Industry. Springer, Berlin (2018)Google Scholar