Design and Integration of a Reconfiguration Robot

  • Jun Jiang
  • Houde LiuEmail author
  • Bo Yuan
  • Lunfei Liang
  • Bin Liang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11742)


Based on the kinematic topology of bionic robot and robot motion planning modeling, this paper designs the mechanical structure of highly integrated robotic joint module, the fast self-reconfigurable module, the drive control software, and the hardware for the system. Through the experimental verification and simulation data analysis, the robot joint module and the fast self-reconfiguration module designed in this paper meet the performance requirement of the reconfigurable intelligent robot. Finally, the prototype verification of the reconfigurable intelligent robot is realized in this paper.


Reconfigurable robot Joint module Reconfiguration module 



This work was partially supported by the National Natural Science Foundation of China (No. U1813216 and No. 61803221), the Science and Technology Research Foundation of Shenzhen (JCYJ20160301100921349 and JCYJ20170817152701660). The author is thankful to several brilliant engineers, including: Xingzhang Wu, Guanyu Wang (HIT), Ruiping Zhao, Xun Ran, and Shuanglong Li, Jing Xiao for providing support and necessary facilities.


  1. 1.
    Will, P., Castano, A., Shen, W.-M.: Robot modularity for self-reconfiguration. In: Proceedings of SPIE Sensor Fusion and Decentralized Control in Robotic Systems II, vol. 3839, pp. 236–245 (1999)Google Scholar
  2. 2.
    Suh, J.W., Homans, S.B., Yim, M.: Telecubes: mechanical design of a module for a self-reconfigurable robotics. In: International Conference on Robotics and Automation, pp. 4095–4101. IEEE, Washington DC (2002)Google Scholar
  3. 3.
    Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule: design and control algorithms. In: Algorithmic Foundations of Robotics (1998)Google Scholar
  4. 4.
    Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. In: 1998 IEEE International Conference on Robotics and Automation, pp. 432–439. IEEE, Leuven (1998)Google Scholar
  5. 5.
    Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: 1999 IEEE International Conference on Robotics and Automation, pp. 2513–2520. IEEE, Detroit (1999)Google Scholar
  6. 6.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7, 442–451 (2000)CrossRefGoogle Scholar
  7. 7.
    Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation, pp. 514–520. IEEE, San Francisco (2000)Google Scholar
  8. 8.
    Zhang, Y., Roufas, K., Eldershaw, C., Yim, M., Duff, D.: Sensor computations in modular self reconfigurable robots. In: Siciliano, B., Dario, P. (eds.) Experimental Robotics VIII. STAR, vol. 5, pp. 276–286. Springer, Heidelberg (2003). Scholar
  9. 9.
    Guan, X., Zheng, H., Zhang, X.: Biologically inspired quadruped robot biosbot: modeling, simulation and experiment. In: 2nd International Conference on Autonomous Robots and Agents, pp. 261–266. IEEE, Palmerston North (2004)Google Scholar
  10. 10.
    Hayashi, I., Iwatsuki, N., Iwashina, S.: The running characteristics of a screw-principle microrobot in a small bent pipe. In: Sixth International Symposium on Micro Machine and Human Science, pp. 225–228. IEEE, Nagoya (1995)Google Scholar
  11. 11.
    Arikawa, K., Hirose, S.: Development of quadruped walking robot TITAN-VIII. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 208–214. IEEE, Osaka (1996)Google Scholar
  12. 12.
    Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 23, 215–221 (1955)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Park, F.C., Kim, M.W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies. Zeitschrift fur angewandte Mathematik und Physik ZAMP 51(5), 820–834 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mladenova, C.D.: Group-theoretical methods in manipulator kinematics and symbolic computations. J. Intell. Syst. 8(1), 21–34 (1993)CrossRefGoogle Scholar
  15. 15.
    Craig, J.J.: Inroduction to Robotics, 3rd edn. China Machine Press, Beijing (2005)Google Scholar
  16. 16.
    The Kollmorgen Torquer Brushless Motor Series direct drive frameless motor.
  17. 17.
    The Leaderdriver LHSG-I Series harmonic reducer.
  18. 18.
    Li, J., Tan, Q., Zhang, Y., Zhang, K.: Study on the calculation of magnetic force based on the equivalent magnetic charge method. In: 2012 International Conference on Applied Physics and Industrial Engineering, Physics Procedia, pp. 190–197 (2012)Google Scholar
  19. 19.
    STMicroelectroincs, STM32F103 devices use the Cortex-M3 core, with a maximum CPU speed of 72 Mhz.
  20. 20.
    Hirose, S., Yoneda, K., Tsukagoshi, H.: TITAN VII: quadruped walking and manipulating robot on a steep slope. In: IEEE International Conference on Robotics and Automation, pp. 494–500. IEEE, Albuquerque (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jun Jiang
    • 1
  • Houde Liu
    • 1
    Email author
  • Bo Yuan
    • 1
  • Lunfei Liang
    • 1
  • Bin Liang
    • 1
  1. 1.Graduate School at ShenzhenTsinghua UniversityShenzhenPeople’s Republic of China

Personalised recommendations