Advertisement

Common Methods and Sustainability Indicators

  • Valentin BellassenEmail author
  • Federico Antonioli
  • Antonio Bodini
  • Michele Donati
  • Marion Drut
  • Matthieu Duboys de Labarre
  • Mohamed Hilal
  • Sylvette Monier-Dilhan
  • Paul Muller
  • Thomas Poméon
  • Mario Veneziani
Chapter

Abstract

This chapter summarizes the common method and indicators used throughout this book to assess the sustainability performance of Food Quality Schemes (FQS) and their reference products. It contains the list of 23 indicators used to assess sustainability in food and agri-food value chains. This list was drawn up on the basis of a literature review and the FAO’s Sustainability Assessment of Food and Agriculture systems (SAFA) indicators (FAO 2013). The chapter presents the assumptions and choices, the process of data collection and the indicator estimation methods designed to assess the three sustainability dimensions within a reasonable time constraint, i.e. three person.months for each food quality scheme and its non-certified reference product. Several prioritizations were set regarding data collection (indicator, variable, value chain level) together with a level of representativeness specific to each variable and product type (country and sector). This chapter also summarizes how relatively common variables (e.g., number of animals per hectare, …) collected for each case study are combined into indicators (e.g., carbon footprint), thus providing the key for their interpretation in subsequent chapters.

References

  1. Acosta-Alba, I., & Van der Werf, H. (2011). The use of reference values in indicator-based methods for the environmental assessment of agricultural systems. Sustainability, 3, 424–442.  https://doi.org/10.3390/su3020424.CrossRefGoogle Scholar
  2. Argyres, N. S., & Liebeskind, J. P. (1999). Contractual commitments, bargaining power, and governance inseparability: Incorporating history into transaction cost theory. Academy of Management Review, 24, 49–63.  https://doi.org/10.5465/AMR.1999.1580440.CrossRefGoogle Scholar
  3. Bellassen, V., Giraud, G., Hilal, M., Arfini, F., Barczak, A., Bodini, A., Brennan, M., Drut, M., Duboys de Labarre, M., Gorton, M., Hartmann, M., Majewski, E., Muller, P., Monier-Dilhan, S., Poméon, T., Tocco, B., Tregear, A., Veneziani, M., Vergote, M.-H., Vitterso, G., Wavresky, P., Wilkinson, A. (2016). Methods and indicators for measuring the social, environmental and economic impacts of food quality schemes, Strength2Food project, deliverable 3.2. INRA, Dijon, France. www.strength2food.eu/2016/10/03/methodological-handbook/
  4. Bockstaller, C., Feschet, P., & Angevin, F. (2015). Issues in evaluating sustainability of farming systems with indicators. Oilseeds and Fats, Crops and Lipids, 22, D102.  https://doi.org/10.1051/ocl/2014052.CrossRefGoogle Scholar
  5. Chatellier, V. (2002). Les exploitations laitières françaises sont-elles assez performantes pour faire face à une baisse du prix du lait ? INRA Productions Animales, 15, 17–30.Google Scholar
  6. Chatellier, V., & Delattre, F. (2003). La production laitière dans les montagnes françaises: une dynamique particulière pour les Alpes du Nord. INRA Productions Animales, 16, 61–76.Google Scholar
  7. Coff, R. W. (1999). When competitive advantage doesn’t lead to performance: The resource-based view and stakeholder bargaining power. Organization Science, 10, 119–133.  https://doi.org/10.1287/orsc.10.2.119.CrossRefGoogle Scholar
  8. Coff, R. W. (2010). The coevolution of rent appropriation and capability development. Strategic Management Journal, 31, 711–733.Google Scholar
  9. Colomb, V., Bernoux, M., Bockel, L., Chotte, J.L., Martin, S., Martin-Phipps, C., Mousset, J., Tinlot, M., Touchemoulin, O. (2012). Review of GHG calculators in agriculture and forestry. (ADEME, IRD, and FAO).Google Scholar
  10. Eco-Invent database. (2012). www.ecoinvent.ch
  11. FAO (2010). ‘CROPWAT 8.0 model’ www.fao.org/nr/water/infores_databases_cropwat.html.Google Scholar
  12. FAO. (2013). SAFA indicators. Rome: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  13. Filippi, M., & Muller, P. (2013). Le jeu des Communautés de Pratique au sein des Coopératives agricoles : le cas des filières fromagères vache d’appellation d’origine du Massif Central. In A. Torre & F. Wallet (Eds.), Les Enjeux Du Développement Régional et Territorial En Zones Rurales (pp. 27–58). Paris: L’Harmattan.Google Scholar
  14. FranceAgriMer, Observatoire de la formation des prix et des marges des produits alimentaires. (2011). “Chapitre 2. Les matériaux et les méthodes de l’observatoire de la formation des prix et des marges des produits alimentaires”. https://observatoire-prixmarges.franceagrimer.fr/ (sources et méthodes, Méthodes toutes filières, Chapitre II du rapport de juin 2011).
  15. Gan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81, 491–502.  https://doi.org/10.1016/j.ecolind.2017.05.068.CrossRefGoogle Scholar
  16. Halpern, D. (1999). Social capital: The new golden goose. Faculty of Social and Political Sciences, Cambridge University. Unpublished review.Google Scholar
  17. Hillier, J., Walter, C., Malin, D., Garcia-Suarez, T., Mila-i-Canals, L., & Smith, P. (2011). A farm-focused calculator for emissions from crop and live-stock production. Environmental Modelling & Software, 26, 1070–1078.  https://doi.org/10.1016/j.envsoft.2011.03.014.CrossRefGoogle Scholar
  18. Hillygus, D. S. (2005). The missing link: Exploring the relationship between higher education and political behavior. Political Behavior, 27(1), 25–47.CrossRefGoogle Scholar
  19. JRC. (2010). International reference Life Cycle Data System (ILCD) handbook – general guide for life cycle assessment – detailed guidance. European Commission - Joint Research Centre - Institute for Environment and Sustainability, Luxembourg. Publications Office of the European Union.Google Scholar
  20. Just, R. E., & Pope, R. D. (2001). The agricultural producer: Theory and statistical measurement. Handbook of Agricultural Economics, 1, 629–741.CrossRefGoogle Scholar
  21. Putnam, R. (2000). Bowling alone – The collapse and revival of American Community. New York: Simon & Schuster.Google Scholar
  22. Rigby, D., Woodhouse, P., Young, T., & Burton, M. (2001). Constructing a farm level indicator of sustainable agricultural practice. Ecological Economics, 39, 463–478.  https://doi.org/10.1016/S0921-8009(01)00245-2.CrossRefGoogle Scholar
  23. Röös, E., Sundberg, C., & Hansson, P.-A. (2014). Carbon footprint of food products. In S. S. Muthu (Ed.), Assessment of carbon footprint in different industrial sectors. Singapore.Google Scholar
  24. Schoon, I., et al. (2010). Social status, cognitive ability, and educational attainment as predictors of liberal social attitudes and political trust. Intelligence, 38, 144–150.CrossRefGoogle Scholar
  25. Touboulic, A., Chicksand, D., & Walker, H. (2014). Managing imbalanced supply chain relationships for sustainability: A power perspective. Decision Sciences, 45, 577–619.  https://doi.org/10.1111/deci.12087.CrossRefGoogle Scholar
  26. UNDP. (2018). Human development indices and indicators 2018 statistical update technical notes. [online]. Available at http://hdr.undp.org/sites/default/files/hdr2018_technical_notes.pdf. Last accessed on 4 Dec 2018.
  27. Weber, C. L., & Matthews, H. S. (2008). Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 42, 3508–3513.  https://doi.org/10.1021/es702969f.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentin Bellassen
    • 1
    Email author
  • Federico Antonioli
    • 2
  • Antonio Bodini
    • 2
  • Michele Donati
    • 2
  • Marion Drut
    • 1
  • Matthieu Duboys de Labarre
    • 1
  • Mohamed Hilal
    • 1
  • Sylvette Monier-Dilhan
    • 3
  • Paul Muller
    • 4
  • Thomas Poméon
    • 3
  • Mario Veneziani
    • 2
  1. 1.CESAER, AgroSup Dijon, INRA, Univ. Bourgogne Franche-ComtéDijonFrance
  2. 2.Università di ParmaParmaItaly
  3. 3.Observatoire du Développement Rural (ODR), INRAToulouseFrance
  4. 4.Bureau d’Economie Théorique et Appliquée (BETA, UMR CNRS 7522), Université de LorraineMetzFrance

Personalised recommendations