Advertisement

Toward a Deep Science of Affect and Motivation

  • Brian KnutsonEmail author
  • Tara Srirangarajan
Chapter
Part of the Nebraska Symposium on Motivation book series (NSM, volume 66)

Abstract

We propose a “deep science” approach that can link neural, affective, and motivational levels of analysis. Recent neuroimaging research has linked neural activity to anticipatory affective experience (i.e., in the Nucleus Accumbens or NAcc to positive arousal and in the Anterior Insula or AIns to general or negative arousal). Activity in circuits implicated in anticipatory affect further predicts motivated behavior in diverse scenarios (with NAcc activity predicting approach and AIns activity predicting avoidance). More extended links can now be forged from lower levels of analysis related to neurochemistry (e.g., release of dopamine and norepinephrine in target regions), as well as to higher levels of analysis related to aggregate choice (e.g., increases versus decreases in market demand). Innovation of new methods with matching resolution has enabled the linkage of previously disparate levels of analysis, which may most rapidly yield applications capable of improving health and welfare.

Keywords

Striatum Insula Frontal Neuroimaging Human 

Notes

Acknowledgments

We thank Ingrid Haas, Yuan Chang Leong, Maital Neta, and Jeanne Tsai for feedback on earlier drafts. During manuscript preparation, the author was supported by a Wu Tsai Stanford Neurosciences Institute Grant to the NeuroChoice Initiative.

References

  1. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517.  https://doi.org/10.1016/j.neuron.2006.03.036CrossRefPubMedGoogle Scholar
  2. Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11, 284–292.  https://doi.org/10.1038/nrn2795CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI during task activation. Magnetic Resonance in Medicine, 25(2), 390–397.  https://doi.org/10.1002/mrm.1910250220CrossRefPubMedGoogle Scholar
  4. Bargmann, C. I. (2012). Beyond the connectome: How neuromodulators shape neural circuits. BioEssays, 34(6), 458–465.  https://doi.org/10.1002/bies.201100185CrossRefPubMedGoogle Scholar
  5. Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual Review of Psychology, 58, 373–403.  https://doi.org/10.1146/annurev.psych.58.110405.085709CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.  https://doi.org/10.1016/j.neuroimage.2013.02.063CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 215–225.  https://doi.org/10.1093/cercor/6.2.215CrossRefPubMedGoogle Scholar
  8. Berns, G. S., & Moore, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154–160.  https://doi.org/10.1016/j.jcps.2011.05.001CrossRefGoogle Scholar
  9. Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology and Behavior, 81(2), 179–209.  https://doi.org/10.1016/j.physbeh.2004.02.004CrossRefPubMedGoogle Scholar
  10. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.  https://doi.org/10.1016/S0165-0173(98)00019-8CrossRefPubMedGoogle Scholar
  11. Cacioppo, J. T., & Berntson, G. G. (1992). Social Psychological Contributions to the Decade of the Brain: Doctrine of Multilevel Analysis. American Psychologist, 47(8), 1019–1028.  https://doi.org/10.1037/0003-066X.47.8.1019CrossRefPubMedGoogle Scholar
  12. Canessa, N., Crespi, C., Motterlini, M., Baud-Bovy, G., Chierchia, G., Pantaleo, G., … Cappa, S. F. (2013). The functional and structural neural basis of individual differences in loss aversion. Journal of Neuroscience, 33(36), 14307–14317.  https://doi.org/10.1523/jneurosci.0497-13.2013CrossRefPubMedGoogle Scholar
  13. Clithero, J. A., & Rangel, A. (2013). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9(9), 1289–1302.  https://doi.org/10.1093/scan/nst106CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cooper, J. C., & Knutson, B. (2008). Valence and salience contribute to nucleus accumbens activation. NeuroImage, 29, 538–547.  https://doi.org/10.1016/j.neuroimage.2007.08.009CrossRefGoogle Scholar
  15. Craig, W. (1918). Appetites and aversions as constituents of instincts. The Biological Bulletin, 34(2), 91–107.  https://doi.org/10.2307/1536346CrossRefGoogle Scholar
  16. Davidson, R. J. (2015). Comment: Affective chronometry has come of age. Emotion Review, 7(4), 368–370.  https://doi.org/10.1177/1754073915590844CrossRefGoogle Scholar
  17. Decot, H. K., Namboodiri, V. M. K., Gao, W., McHenry, J. A., Jennings, J. H., Lee, S. H., … Stuber, G. D. (2017). Coordination of brain-wide activity dynamics by dopaminergic neurons. Neuropsychopharmacology, 42(3), 615–627.  https://doi.org/10.1038/npp.2016.151CrossRefPubMedGoogle Scholar
  18. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6), 3072–3077.  https://doi.org/10.1152/jn.2000.84.6.3072CrossRefPubMedGoogle Scholar
  19. Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32(16), 5549–5552.  https://doi.org/10.1523/jneurosci.5958-11.2012CrossRefPubMedGoogle Scholar
  20. Descartes, R. (1641). Meditation IV. In the philosophical works of descartes (pp. 1–33). Cambridge, England: Cambridge University Press.Google Scholar
  21. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415–434.  https://doi.org/10.1016/j.neuron.2012.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  22. Diekhof, E. K., Kaps, L., Falkai, P., & Gruber, O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude: An activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266.  https://doi.org/10.1016/j.neuropsychologia.2012.02.007CrossRefPubMedGoogle Scholar
  23. Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in human reward systems. The Journal of Neuroscience, 20(16), 6159–6165.  https://doi.org/10.1523/JNEUROSCI.20-16-06159.2000CrossRefPubMedPubMedCentralGoogle Scholar
  24. Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E. J., & Shadlen, M. N. (1994). FMRI of human visual cortex. Nature, 369, 525.  https://doi.org/10.1038/369525a0CrossRefPubMedGoogle Scholar
  25. Engelmann, J. B., Meyer, F., Fehr, E., & Ruff, C. C. (2015). Anticipatory anxiety disrupts neural valuation during risky choice. Journal of Neuroscience, 35(7), 3085–3099.  https://doi.org/10.1523/jneurosci.2880-14.2015CrossRefPubMedGoogle Scholar
  26. Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From neural responses to population behavior: Neural focus group predicts population-level media effects. Psychological Science, 23(5), 439–445.  https://doi.org/10.1177/0956797611434964CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ferenczi, E. A., Zalocusky, K. A., Liston, C., Grosenick, L., Warden, M. R., Amatya, D., … Deisseroth, K. (2016). Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science, 351, aac9698.  https://doi.org/10.1126/science.aac9698CrossRefPubMedPubMedCentralGoogle Scholar
  28. Finucane, M. L., Alhakami, A., Slovic, P., & Johnson, S. M. (2000). The affect heuristic in judgments of risks and benefits. Journal of Behavioral Decision Making, 13(1), 1–17.  https://doi.org/10.1002/(SICI)1099-0771(200001/03)13:1<1::AID-BDM333>3.0.CO;2-SCrossRefGoogle Scholar
  29. Genevsky, A., & Knutson, B. (2015). Neural affective mechanisms predict market-level microlending. Psychological Science, 26(9), 1411–1422.  https://doi.org/10.1177/0956797615588467CrossRefPubMedPubMedCentralGoogle Scholar
  30. Genevsky, A., Västfjäll, D., Slovic, P., & Knutson, B. (2013). Neural underpinnings of the identifiable victim effect: Affect shifts preferences for giving. The Journal of Neuroscience, 33(34), 17188–17196.  https://doi.org/10.1523/jneurosci.2348-13.2013CrossRefPubMedPubMedCentralGoogle Scholar
  31. Genevsky, A., Yoon, C., & Knutson, B. (2017). When brain beats behavior: Neuroforecasting crowdfunding outcomes. The Journal of Neuroscience, 37(36), 8625–8634.  https://doi.org/10.1523/JNEUROSCI.1633-16.2017CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grosenick, L., Marshel, J. H., & Deisseroth, K. (2015). Closed-loop and activity-guided optogenetic control. Neuron, 86(1), 106–139.  https://doi.org/10.1016/j.neuron.2015.03.034CrossRefPubMedPubMedCentralGoogle Scholar
  33. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.  https://doi.org/10.1038/npp.2009.129CrossRefPubMedGoogle Scholar
  34. Hampton, A. N., & O’Doherty, J. P. (2007). Decoding the neural substrates of reward-related decision making with functional MRI. Proceedings of the National Academy of Sciences, 104(4), 1377–1382.  https://doi.org/10.1073/pnas.0606297104CrossRefGoogle Scholar
  35. Harbaugh, W. T., Mayr, U., & Burghart, D. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316(5831), 1622–1626.  https://doi.org/10.1126/science.1140738CrossRefPubMedGoogle Scholar
  36. Harlé, K. M., & Sanfey, A. G. (2007). Incidental Sadness Biases Social Economic Decisions in the Ultimatum Game. Emotion, 7(4), 876–881.  https://doi.org/10.1037/1528-3542.7.4.876CrossRefPubMedGoogle Scholar
  37. Hess, W. R. (1958). The functional organization of the diencephalon. New York, NY: Grune & Stratton.Google Scholar
  38. Huang, Y. F., Soon, C. S., Mullette-Gillman, O. A., & Hsieh, P. J. (2014). Pre-existing brain states predict risky choices. NeuroImage, 101, 466–472.  https://doi.org/10.1016/j.neuroimage.2014.07.036CrossRefPubMedGoogle Scholar
  39. Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29(1), 565–598.  https://doi.org/10.1146/annurev.neuro.29.051605.113009CrossRefPubMedGoogle Scholar
  40. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751.  https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefPubMedGoogle Scholar
  41. Karmarkar, U., Shiv, B., & Knutson, B. (2015). Cost conscious? The neural and behavioral impact of price primacy on decision making. Journal of Marketing Research, 52(4), 467–481.  https://doi.org/10.1509/jmr.13.0488CrossRefGoogle Scholar
  42. King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 78–83.  https://doi.org/10.1126/science.1108062CrossRefPubMedGoogle Scholar
  43. Kirkland, T., & Cunningham, W. A. (2011). Neural basis of affect and emotion. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 656–665.  https://doi.org/10.1002/wcs.145CrossRefPubMedGoogle Scholar
  44. Kirkland, T., & Cunningham, W. A. (2012). Mapping emotions through time: how affective trajectories inform the language of emotion. Emotion, 12(2), 268–282.  https://doi.org/10.1037/a0024218CrossRefPubMedGoogle Scholar
  45. Knutson, B. (2016). Deep science. Retrieved from https://www.edge.org/response-detail/26758
  46. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience, 21(16), 1–5.  https://doi.org/10.1523/JNEUROSCI.21-16-j0002.2001CrossRefGoogle Scholar
  47. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport, 12(17), 3683–3687.  https://doi.org/10.1097/00001756-200112040-00016CrossRefPubMedGoogle Scholar
  48. Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. NeuroImage, 18(2), 263–272.  https://doi.org/10.1016/S1053-8119(02)00057-5CrossRefPubMedGoogle Scholar
  49. Knutson, B., & Genevsky, A. (2018). Neuroforecasting aggregate choice. Current Directions in Psychological Science, 27(2), 110–115.  https://doi.org/10.1177/0963721417737877CrossRefPubMedPubMedCentralGoogle Scholar
  50. Knutson, B., & Gibbs, S. (2007). Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology, 191, 813–822.  https://doi.org/10.1007/s00213-006-0686-7CrossRefPubMedGoogle Scholar
  51. Knutson, B., & Greer, S. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1511), 3771–3786.  https://doi.org/10.1098/rstb.2008.0155CrossRefGoogle Scholar
  52. Knutson, B., & Huettel, S. (2015). The risk matrix. Current Opinion in Behavioral Sciences, 5, 141–146.  https://doi.org/10.1016/j.cobeha.2015.10.012CrossRefGoogle Scholar
  53. Knutson, B., & Karmarkar, U. (2014). Appetite, consumption, and choice in the human brain. In The interdisciplinary science of consumption (pp. 163–184). Cambridge, MA: The MIT Press.  https://doi.org/10.7551/mitpress/9780262027670.003.0009CrossRefGoogle Scholar
  54. Knutson, B., Katovich, K., & Suri, G. (2014). Inferring affect from fMRI data. Trends in Cognitive Sciences, 18(8), 422–428.  https://doi.org/10.1016/j.tics.2014.04.006CrossRefPubMedGoogle Scholar
  55. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156.  https://doi.org/10.1016/j.neuron.2006.11.010CrossRefPubMedPubMedCentralGoogle Scholar
  56. Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. The Journal of Neuroscience, 25(19), 4806–4812.  https://doi.org/10.1523/JNEUROSCI.0642-05.2005CrossRefPubMedPubMedCentralGoogle Scholar
  57. Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 20–27.  https://doi.org/10.1006/nimg.2000.0593CrossRefPubMedGoogle Scholar
  58. Knutson, B., & Wimmer, G. E. (2007). Reward neural circuitry for social valuation. In Social neuroscience: integrating biological and psychological explanations of social behavior (pp. 157–175). New York, NY: Guilford Press.Google Scholar
  59. Knutson, B., Wimmer, G. E., Kuhnen, C. M., & Winkielman, P. (2008). Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. NeuroReport, 19(5), 509–513.  https://doi.org/10.1097/WNR.0b013e3282f85c01CrossRefPubMedGoogle Scholar
  60. Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the ultimatum game. Journal of Neuroscience, 27(4), 951–956.  https://doi.org/10.1523/jneurosci.4606-06.2007CrossRefPubMedGoogle Scholar
  61. Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M., … Grafman, J. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences, 104(50), 20084–20089.  https://doi.org/10.1073/pnas.0710103104CrossRefGoogle Scholar
  62. Kruschwitz, J. D., Waller, L., List, D., Wisniewski, D., Ludwig, V. U., Korb, F., … Walter, H. (2018). Anticipating the good and the bad: A study on the neural correlates of bivalent emotion anticipation and their malleability via attentional deployment. NeuroImage, 183, 553–564.  https://doi.org/10.1016/j.neuroimage.2018.08.048CrossRefPubMedGoogle Scholar
  63. Kühn, S., & Gallinat, J. (2012). The neural correlates of subjective pleasantness. NeuroImage, 61, 289–294.  https://doi.org/10.1016/j.neuroimage.2012.02.065CrossRefPubMedGoogle Scholar
  64. Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple “buy buttons” in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122–128.  https://doi.org/10.1016/j.neuroimage.2016.05.021CrossRefPubMedGoogle Scholar
  65. Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47(5), 763–770.  https://doi.org/10.1016/j.neuron.2005.08.008CrossRefPubMedGoogle Scholar
  66. Kuppens, P. (2015). It’s about time: A special section on affect dynamics. Emotion Review, 7(4), 297–300.  https://doi.org/10.1177/1754073915590947CrossRefGoogle Scholar
  67. Kuppens, P., Oravecz, Z., & Tuerlinckx, F. (2010). Feelings change: Accounting for individual differences in the temporal dynamics of affect. Journal of Personality and Social Psychology, 99(6), 1042–1060.  https://doi.org/10.1037/a0020962CrossRefPubMedGoogle Scholar
  68. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675–5679.  https://doi.org/10.1073/PNAS.89.12.5675CrossRefGoogle Scholar
  69. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the Startle Reflex. Psychological Review, 97(3), 377–395.  https://doi.org/10.1037/0033-295X.97.3.377CrossRefPubMedGoogle Scholar
  70. Lang, P. J., Greenwald, M. K., & Bradley, M. M. (1993). Looking at pictures: Affective, facial, visceral. and behavioral reactions. Psychophysiology, 30(3), 261–273.  https://doi.org/10.1111/j.1469-8986.1993.tb03352.xCrossRefPubMedGoogle Scholar
  71. Lebreton, M., Jorge, S., Michel, V., Thirion, B., & Pessiglione, M. (2009). An automatic valuation system in the human brain: Evidence from functional neuroimaging. Neuron, 64(3), 431–439.  https://doi.org/10.1016/j.neuron.2009.09.040CrossRefPubMedGoogle Scholar
  72. LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.  https://doi.org/10.1016/j.neuron.2012.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  73. Leong, J. K., Pestilli, F., Wu, C. C., Samanez-Larkin, G. R., & Knutson, B. (2016). White-matter tract connecting anterior insula to nucleus accumbens correlates with reduced preference for positively skewed gambles. Neuron, 89(1), 63–69.  https://doi.org/10.1016/j.neuron.2015.12.015CrossRefPubMedPubMedCentralGoogle Scholar
  74. Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038.  https://doi.org/10.1016/j.conb.2012.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  75. Levy, I., Lazzaro, S. C., Rutledge, R. B., & Glimcher, P. W. (2011). Choice from non-choice: predicting consumer preferences from blood oxygenation level-dependent signals obtained during passive viewing. The Journal of Neuroscience, 31(1), 118–125.  https://doi.org/10.1523/JNEUROSCI.3214-10.2011CrossRefPubMedPubMedCentralGoogle Scholar
  76. Litt, A., Plassmann, H., Shiv, B., & Rangel, A. (2011). Dissociating valuation and saliency signals during decision-making. Cerebral Cortex, 21(1), 95–102.  https://doi.org/10.1093/cercor/bhq065CrossRefPubMedGoogle Scholar
  77. Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236.  https://doi.org/10.1016/j.neubiorev.2010.12.012CrossRefPubMedGoogle Scholar
  78. Loewenstein, G. F., Hsee, C. K., Weber, E. U., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267–286.  https://doi.org/10.1037/0033-2909.127.2.267CrossRefPubMedGoogle Scholar
  79. Lohani, S., Poplawsky, A. J., Kim, S. G., & Moghaddam, B. (2017). Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Molecular Psychiatry, 22(4), 585–594.  https://doi.org/10.1038/mp.2016.102CrossRefPubMedGoogle Scholar
  80. MacNiven, K. H., Jensen, E. L. S., Borg, N., Padula, C. B., Humphreys, K., & Knutson, B. (2018). Association of neural responses to drug cues with subsequent relapse to stimulant use. JAMA Network Open, 1(8), 1–14.  https://doi.org/10.1001/jamanetworkopen.2018.6466CrossRefGoogle Scholar
  81. Marr, D. (1982). Vision. New York, NY: W. H. Freeman and Company.Google Scholar
  82. Nagel, T. (1998). Reductionism and antireductionism. The Limits of Reductionism in Biology, 213, 3–14.  https://doi.org/10.1002/9780470515488.ch2CrossRefGoogle Scholar
  83. Namburi, P., Al-Hasani, R., Calhoon, G. G., Bruchas, M. R., & Tye, K. M. (2016). Architectural representation of valence in the limbic system. Neuropsychopharmacology, 41(7), 1697–1715.  https://doi.org/10.1038/npp.2015.358CrossRefPubMedPubMedCentralGoogle Scholar
  84. Nielsen, L., Knutson, B., & Carstensen, L. L. (2008). Affect dynamics, affective forecasting, and aging. Emotion, 8(3), 318–330.  https://doi.org/10.1037/1528-3542.8.3.318CrossRefPubMedPubMedCentralGoogle Scholar
  85. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain-A meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457.  https://doi.org/10.1016/j.neuroimage.2005.12.002CrossRefPubMedGoogle Scholar
  86. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102.  https://doi.org/10.1038/82959CrossRefPubMedGoogle Scholar
  87. O’Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33(5), 815–826.  https://doi.org/10.1016/S0896-6273(02)00603-7CrossRefPubMedGoogle Scholar
  88. Olds, J. (1955). Physiological mechanisms of reward. In M. R. Jones (Ed.), Nebraska symposium on motivation: 1955 (pp. 73–139). Lincoln, NE: University of Nebraska Press.Google Scholar
  89. Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.CrossRefGoogle Scholar
  90. Olds, M. E., & Fobes, J. L. (1981). Activity responses to morphine and amphetamine in rats with elevated NE levels in the pons. Pharmacology, Biochemistry and Behavior, 15(2), 167–171.  https://doi.org/10.1016/0091-3057(81)90172-6CrossRefPubMedGoogle Scholar
  91. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Oxford, England: Illinois Press.Google Scholar
  92. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York, NY: Oxford University Press.Google Scholar
  93. Panksepp, J., Knutson, B., & Burgdorf, J. (2002). The role of brain emotional systems in addictions: A neuro-evolutionary perspective and new “self-report” animal model. Addiction, 97(4), 459–469.  https://doi.org/10.1046/j.1360-0443.2002.00025.xCrossRefPubMedGoogle Scholar
  94. Park, B. K., Blevins, E., Knutson, B., & Tsai, J. L. (2017). Neurocultural evidence that ideal affect match promotes giving. Social Cognitive and Affective Neuroscience, 12(7), 1083–1096.  https://doi.org/10.1093/scan/nsx047CrossRefPubMedPubMedCentralGoogle Scholar
  95. Pessiglione, M., Petrovic, P., Daunizeau, J., Palminteri, S., Dolan, R. J., & Frith, C. D. (2008). Subliminal instrumental conditioning demonstrated in the human brain. Neuron, 59(4), 561–567.  https://doi.org/10.1016/j.neuron.2008.07.005CrossRefPubMedPubMedCentralGoogle Scholar
  96. Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., & Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science, 316(5826), 904–906.  https://doi.org/10.1126/science.1140459CrossRefPubMedPubMedCentralGoogle Scholar
  97. Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. The Journal of Neuroscience, 28(11), 2745–2752.  https://doi.org/10.1523/JNEUROSCI.4286-07.2008CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ramnani, N., Elliott, R., Athwal, B. S., & Passingham, R. E. (2004). Prediction error for free monetary reward in the human prefrontal cortex. NeuroImage, 23(3), 777–786.  https://doi.org/10.1016/j.neuroimage.2004.07.028CrossRefPubMedGoogle Scholar
  99. Rao, S. M., Binder, J. R., Hammeke, T. A., Bandettini, P. A., Bobholz, J. A., Frost, J. A., … Hyde, J. S. (1995). Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology, 45(5), 919–924.  https://doi.org/10.1212/WNL.45.5.919CrossRefPubMedGoogle Scholar
  100. Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A neural basis for social cooperation. Neuron, 35(2), 395–405.  https://doi.org/10.1016/S0896-6273(02)00755-9CrossRefPubMedGoogle Scholar
  101. Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. NeuroReport, 15(16), 2539–2543.  https://doi.org/10.1097/00001756-200411150-00022CrossRefPubMedGoogle Scholar
  102. Robinson, D. L., Venton, B. J., Heien, M. L. A. V., & Wightman, R. M. (2003). Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clinical Chemistry, 49(10), 1763–1773.  https://doi.org/10.1373/49.10.1763CrossRefPubMedGoogle Scholar
  103. Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15, 549–562.  https://doi.org/10.1038/nrn3776CrossRefPubMedGoogle Scholar
  104. Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1987). Parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  105. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178.  https://doi.org/10.1037/h0077714CrossRefGoogle Scholar
  106. Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805–819.  https://doi.org/10.1037/0022-3514.76.5.805CrossRefPubMedGoogle Scholar
  107. Salimpoor, V. N., Van Den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216–219.  https://doi.org/10.1126/science.1231059CrossRefPubMedGoogle Scholar
  108. Samanez-Larkin, G., Gibbs, S., Khanna, K., Nielsen, L., Carstensen, L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787–791.  https://doi.org/10.1038/nn1894CrossRefPubMedPubMedCentralGoogle Scholar
  109. Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews Neuroscience, 16(5), 278–289.  https://doi.org/10.1038/nrn3917CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318(5850), 598–602.  https://doi.org/10.1126/science.1142996CrossRefPubMedGoogle Scholar
  111. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 1755–1758.  https://doi.org/10.1126/science.1082976CrossRefPubMedGoogle Scholar
  112. Scholz, C., Baek, E. C., O’Donnell, M. B., Kim, H. S., Cappella, J. N., & Falk, E. B. (2017). A neural model of valuation and information virality. Proceedings of the National Academy of Sciences, 114(11), 2881–2886.  https://doi.org/10.1073/pnas.1615259114CrossRefGoogle Scholar
  113. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.  https://doi.org/10.1126/science.275.5306.1593CrossRefGoogle Scholar
  114. Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting big data to good use in neuroscience. Nature Neuroscience, 17(11), 1440–1441.  https://doi.org/10.1038/nn.3839CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696.  https://doi.org/10.1016/j.neubiorev.2013.02.002CrossRefPubMedGoogle Scholar
  116. Smith, A., Douglas Bernheim, B., Camerer, C. F., & Rangel, A. (2014). Neural activity reveals preferences without choices. American Economic Journal: Microeconomics, 6(2), 1–36.  https://doi.org/10.1257/mic.6.2.1CrossRefPubMedGoogle Scholar
  117. Smith, D. V., Hayden, B. Y., Truong, T. K., Song, A. W., Platt, M. L., & Huettel, S. A. (2010). Distinct value signals in anterior and posterior ventromedial prefrontal cortex. Journal of Neuroscience, 30(7), 2490–2495.  https://doi.org/10.1523/JNEUROSCI.3319-09.2010CrossRefPubMedGoogle Scholar
  118. Stuss, D. T., Gow, C. A., & Hetherington, C. R. (1992). “No longer gage”: Frontal lobe dysfunction and emotional changes. Journal of Consulting and Clinical Psychology, 60(3), 349–359.  https://doi.org/10.1037/0022-006X.60.3.349CrossRefPubMedGoogle Scholar
  119. Thayer, R. E. (1989). The biopsychology of mood and arousal. Personality and Individual Differences. New York, NY: Oxford University Press.  https://doi.org/10.1016/0191-8869(90)90284-XCrossRefGoogle Scholar
  120. Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of Caudate Activity by Action Contingency. Neuron, 41(2), 281–292.  https://doi.org/10.1016/S0896-6273(03)00848-1CrossRefPubMedGoogle Scholar
  121. Tusche, A., Bode, S., & Haynes, J.-D. (2010). Neural Responses to Unattended Products Predict Later Consumer Choices. Journal of Neuroscience, 30(23), 8024–8031.  https://doi.org/10.1523/jneurosci.0064-10.2010CrossRefPubMedGoogle Scholar
  122. Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436–452.  https://doi.org/10.1509/jmr.13.0593CrossRefGoogle Scholar
  123. Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219–235.  https://doi.org/10.1037/0033-2909.98.2.219CrossRefPubMedGoogle Scholar
  124. Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology, 76(5), 820–838.  https://doi.org/10.1037/0022-3514.76.5.820CrossRefGoogle Scholar
  125. Watson, J. B. (1913). Psychology as the behaviourist views it. Psychological Review, 20(2), 158–177.  https://doi.org/10.1037/h0074428CrossRefGoogle Scholar
  126. Wilson, T. D., & Gilbert, D. T. (2003). Affective forecasting. Advances in Experimental Social Psychology, 35, 345–411.  https://doi.org/10.1016/j.pain.2011.02.015CrossRefGoogle Scholar
  127. Witten, I. B., Steinberg, E. E., Lee, S. Y., Davidson, T. J., Zalocusky, K. A., Brodsky, M., … Deisseroth, K. (2011). Recombinase-driver rat lines: Tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron, 72(5), 721–733.  https://doi.org/10.1016/j.neuron.2011.10.028CrossRefPubMedPubMedCentralGoogle Scholar
  128. Wu, C. C., Bossaerts, P., & Knutson, B. (2011). The affective impact of financial skewness on neural activity and choice. PLoS One, 6(2), 1–7.  https://doi.org/10.1371/journal.pone.0016838CrossRefGoogle Scholar
  129. Wu, C. C., Sacchet, M. D., & Knutson, B. (2012). Toward an affective neuroscience account of financial risk taking. Frontiers in Neuroscience, 6(159), 1–10.  https://doi.org/10.3389/fnins.2012.00159CrossRefGoogle Scholar
  130. Wu, H., Miller, K. J., Blumenfeld, Z., Williams, N. R., Ravikumar, V. K., Lee, K. E., … Halpern, C. H. (2018). Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man. Proceedings of the National Academy of Sciences of the United States of America, 115(1), 192–197.  https://doi.org/10.1073/pnas.1712214114CrossRefPubMedGoogle Scholar
  131. Wundt, W. (1897). Outlines of psychology. London, England: Williams and Norgate.  https://doi.org/10.1037/12908-000CrossRefGoogle Scholar
  132. Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 35(2), 151–175.  https://doi.org/10.1037/0003-066X.35.2.151CrossRefGoogle Scholar
  133. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517.  https://doi.org/10.1016/S0896-6273(04)00183-7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyStanford UniversityStanfordUSA

Personalised recommendations