Emotion in the Mind and Body pp 121-160 | Cite as
Pathways to Motivational Impairments in Psychopathology: Common Versus Unique Elements Across Domains
Abstract
Our ability as humans to engage in goal-directed actions that allow us to obtain outcomes that we desire is a core component of life satisfaction and achievement. Sadly, many forms of mental illness involve impairments in varying facets of motivation that are important contributors to the all too frequent impaired life function and reduced quality of life experienced by such individuals. As such, both the field of psychopathology research broadly and the Research Domain Criteria (RDoC) initiative have recognized the centrality of examining motivation and incentive processing in psychopathology. This review will focus on the types of motivational impairments seen in disorders such as depression and schizophrenia. Some individuals with depression do not engage in occupational, educational, or social behaviors that they might participate in when not depressed and may spend much of their time alone and engaged in very passive activities (sleeping, watching TV, etc.). Similarly, in schizophrenia, motivational impairments can also take the form of reduced efforts to engage in occupational, educational, or social experiences. In this review, we argue that elements of the final common pathway to impairments in motivation in depression and schizophrenia may be shared and are likely to involve deficits in what can be referred to as effort-cost decision-making (ECDM). This hypothesis suggests that a proximal cause of reduced engagement in occupational, educational, and social pursuits in both depression and schizophrenia is a reduced willingness to exert effort to obtain potentially rewarding or positive outcomes. However, we also argue that these ECDM deficits in depression and schizophrenia reflect differing distal mechanisms. More specifically, we argue that ECDM impairments in depression may be strongly related to reductions in hedonic experience of reward and pleasure, while ECDM deficits in schizophrenia may more strongly reflect difficulties with cognitive control and internal representation of future or past events and use of incentive information that is not currently available in the environment.
Keywords
Motivation Reward Depression Schizophrenia Effort LearningNotes
Acknowledgments
Parts of this chapter have been rePrinted with permission from Oxford University Press and Cambridge University Press and come from Barch, D. M., Pagliaccio, D., & Luking, K. (2019). Positive Valence System Dysregulation in Psychosis: A comparative Analysis. In Gruber, J. (Ed). Oxford Handbook of Positive Emotion and Psychopathology and Barch, D. M., Pagliaccio, D., & Luking, K. (2018). Motivational Impairments in Psychotic and Depressive Pathology: Psychological and Neural Mechanisms. In Sangha, S., & Foti, D., Eds. Neurobiology of Abnormal Emotion and Motivated Behaviors: Integrating Animal and Human Research. Pages 278–304.
References
- Admon, R., Kaiser, R. H., Dillon, D. G., Beltzer, M., Goer, F., Olson, D. P., … Pizzagalli, D. A. (2017). Dopaminergic enhancement of striatal response to reward in major depression. The American Journal of Psychiatry, 174(4), 378–386. https://doi.org/10.1176/appi.ajp.2016.16010111CrossRefPubMedPubMedCentralGoogle Scholar
- Ahern, E., & Semkovska, M. (2017). Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology, 31(1), 52–72. https://doi.org/10.1037/neu0000319CrossRefPubMedPubMedCentralGoogle Scholar
- Ait Oumeziane, B., & Foti, D. (2016). Reward-related neural dysfunction across depression and impulsivity: A dimensional approach. Psychophysiology, 53(8), 1174–1184. https://doi.org/10.1111/psyp.12672CrossRefPubMedPubMedCentralGoogle Scholar
- Albrecht, M. A., Waltz, J. A., Frank, M. J., & Gold, J. M. (2016). Probability and magnitude evaluation in schizophrenia. Schizophrenia Research: Cognition, 5, 41–46. https://doi.org/10.1016/j.scog.2016.06.003CrossRefGoogle Scholar
- Auster, T. L., Cohen, A. S., Callaway, D. A., & Brown, L. A. (2014). Objective and subjective olfaction across the schizophrenia spectrum. Psychiatry, 77(1), 57–66. https://doi.org/10.1521/psyc.2014.77.1.57CrossRefPubMedPubMedCentralGoogle Scholar
- Bakic, J., Pourtois, G., Jepma, M., Duprat, R., De Raedt, R., & Baeken, C. (2016). Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning. Depression and Anxiety. https://doi.org/10.1002/da.22576PubMedCrossRefPubMedCentralGoogle Scholar
- Bansal, S., Robinson, B. M., Geng, J. J., Leonard, C. J., Hahn, B., Luck, S. J., & Gold, J. M. (2018). The impact of reward on attention in schizophrenia. Schizophrenia Research: Cognition, 12, 66–73. https://doi.org/10.1016/j.scog.2018.05.001CrossRefGoogle Scholar
- Barch, D. M., Carter, C. S., Gold, J. M., Johnson, S. L., Kring, A. M., MacDonald, A. W., … Strauss, M. E. (2017). Explicit and implicit reinforcement learning across the psychosis spectrum. Journal of Abnormal Psychology, 126(5), 694–711. https://doi.org/10.1037/abn0000259CrossRefPubMedPubMedCentralGoogle Scholar
- Barch, D. M., & Ceaser, A. E. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Science, 16, 27–34.CrossRefGoogle Scholar
- Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919–934. https://doi.org/10.1093/schbul/sbq068CrossRefPubMedPubMedCentralGoogle Scholar
- Barch, D. M., Oquendo, M. A., Pacheco, J., & Morris, S. (2016). Behavioral assessment methods for RDoC constructs: A report by the National Advisory Mental Health Council Workgroup on tasks and measures for RDoC. Washington, DC: National Institutes of Mental Health.Google Scholar
- Barch, D. M., Pagliaccio, D., & Luking, K. (2015). Mechanisms underlying motivational deficits in psychopathology: Similarities and differences in depression and schizophrenia. Current Topics in Behavioral Neurosciences. https://doi.org/10.1007/7854_2015_376Google Scholar
- Barch, D. M., Pagliaccio, D., & Luking, K. (2018). Motivational impairments in psychotic and depressive pathology: Psychological and neural mechanisms. In S. Sangha & D. Foti (Eds.), Neurobiology of abnormal emotion and motivated behaviors: Integrating animal and human research (pp. 278–304). London, England: Academic Press.CrossRefGoogle Scholar
- Barch, D. M., Pagliaccio, D., & Luking, K. (2019). Positive valence system dysregulation in psychosis: A comparative analysis. In J. Gruber (Ed.), Handbook of positive emotion and psychopathology (pp. 253–283). London, England: Oxford University Press.Google Scholar
- Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387–397. https://doi.org/10.1037/a0036299CrossRefPubMedPubMedCentralGoogle Scholar
- Bechara, A., Damasio, A. R., Damasio, H., & Anderson, H. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedCrossRefPubMedCentralGoogle Scholar
- Belden, A. C., Irvin, K., Hajcak, G., Kappenman, E. S., Kelly, D., Karlow, S., … Barch, D. M. (2016). Neural correlates of reward processing in depressed and healthy preschool-age children. Journal of the American Academy of Child and Adolescent Psychiatry, 55(12), 1081–1089. https://doi.org/10.1016/j.jaac.2016.09.503CrossRefPubMedPubMedCentralGoogle Scholar
- Berlin, I., Givry-Steiner, L., Lecrubier, Y., & Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. European Psychiatry, 13(6), 303–309. https://doi.org/10.1016/S0924-9338(98)80048-5CrossRefPubMedPubMedCentralGoogle Scholar
- Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179–209.CrossRefGoogle Scholar
- Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 1124–1143. https://doi.org/10.1111/j.1460-9568.2012.07990.xCrossRefPubMedPubMedCentralGoogle Scholar
- Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457–480. https://doi.org/10.1007/s00213-008-1099-6CrossRefPubMedPubMedCentralGoogle Scholar
- Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646–664. https://doi.org/10.1016/j.neuron.2015.02.018CrossRefPubMedPubMedCentralGoogle Scholar
- Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘Liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65–73. https://doi.org/10.1016/j.coph.2008.12.014CrossRefPubMedPubMedCentralGoogle Scholar
- Bora, E., Fornito, A., Yucel, M., & Pantelis, C. (2012). The effects of gender on grey matter abnormalities in major psychoses: A comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychological Medicine, 42(2), 295–307. https://doi.org/10.1017/S0033291711001450CrossRefPubMedPubMedCentralGoogle Scholar
- Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 16–27.CrossRefGoogle Scholar
- Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010CrossRefPubMedPubMedCentralGoogle Scholar
- Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: The gating model. Progress in Brain Research, 121, 327–349.PubMedCrossRefPubMedCentralGoogle Scholar
- Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., … Momcai Group. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. https://doi.org/10.3758/s13415-014-0300-0CrossRefGoogle Scholar
- Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74–81. https://doi.org/10.1111/j.1469-8986.2012.01485.xCrossRefPubMedGoogle Scholar
- Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156–162. https://doi.org/10.1016/j.biopsycho.2011.10.004CrossRefPubMedGoogle Scholar
- Brown, E. C., Hack, S. M., Gold, J. M., Carpenter, W. T., Jr., Fischer, B. A., Prentice, K. P., & Waltz, J. A. (2015). Integrating frequency and magnitude information in decision-making in schizophrenia: An account of patient performance on the Iowa Gambling Task. Journal of Psychiatric Research, 66–67, 16–23. https://doi.org/10.1016/j.jpsychires.2015.04.007CrossRefPubMedGoogle Scholar
- Burkhouse, K. L., Gorka, S. M., Afshar, K., & Phan, K. L. (2017). Neural reactivity to reward and internalizing symptom dimensions. Journal of Affective Disorders, 217, 73–79. https://doi.org/10.1016/j.jad.2017.03.061CrossRefPubMedPubMedCentralGoogle Scholar
- Burkhouse, K. L., Kujawa, A., Kennedy, A. E., Shankman, S. A., Langenecker, S. A., Phan, K. L., & Klumpp, H. (2016). Neural reactivity to reward as a predictor of cognitive behavioral therapy response in anxiety and depression. Depression and Anxiety, 33(4), 281–288. https://doi.org/10.1002/da.22482CrossRefPubMedPubMedCentralGoogle Scholar
- Bylsma, L. M., Morris, B. H., & Rottenberg, J. (2008). A meta-analysis of emotional reactivity in major depressive disorder. Clinical Psychology Review, 28(4), 676–691. https://doi.org/10.1016/j.cpr.2007.10.001CrossRefPubMedGoogle Scholar
- Callaghan, C. K., Rouine, J., Dean, R. L., Knapp, B. I., Bidlack, J. M., Deaver, D. R., & O’Mara, S. M. (2018). Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-alpha-induced depression model. Brain, Behavior, and Immunity, 67, 152–162. https://doi.org/10.1016/j.bbi.2017.08.016CrossRefPubMedGoogle Scholar
- Camardese, G., Di Giuda, D., Di Nicola, M., Cocciolillo, F., Giordano, A., Janiri, L., & Guglielmo, R. (2014). Imaging studies on dopamine transporter and depression: A review of literature and suggestions for future research. Journal of Psychiatric Research, 51, 7–18. https://doi.org/10.1016/j.jpsychires.2013.12.006CrossRefPubMedGoogle Scholar
- Cannon, D. M., Klaver, J. M., Peck, S. A., Rallis-Voak, D., Erickson, K., & Drevets, W. C. (2009). Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology, 34(5), 1277–1287. https://doi.org/10.1038/npp.2008.194CrossRefPubMedGoogle Scholar
- Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57(4), 1608–1616. https://doi.org/10.1016/j.neuroimage.2011.05.037CrossRefPubMedGoogle Scholar
- Chase, H. W., Loriemi, P., Wensing, T., Eickhoff, S. B., & Nickl-Jockschat, T. (2018). Meta-analytic evidence for altered mesolimbic responses to reward in schizophrenia. Human Brain Mapping. https://doi.org/10.1002/hbm.24049PubMedCrossRefGoogle Scholar
- Chase, H. W., Nusslock, R., Almeida, J. R., Forbes, E. E., LaBarbara, E. J., & Phillips, M. L. (2013). Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disorders, 15(8), 839–854. https://doi.org/10.1111/bdi.12132CrossRefPubMedPubMedCentralGoogle Scholar
- Chentsova-Dutton, Y., & Hanley, K. (2010). The effects of anhedonia and depression on hedonic responses. Psychiatry Research, 179(2), 176–180. https://doi.org/10.1016/j.psychres.2009.06.013CrossRefPubMedGoogle Scholar
- Chong, T. T., Bonnelle, V., Manohar, S., Veromann, K. R., Muhammed, K., Tofaris, G. K., … Husain, M. (2015). Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex, 69, 40–46. https://doi.org/10.1016/j.cortex.2015.04.003CrossRefPubMedPubMedCentralGoogle Scholar
- Chung, Y. S., & Barch, D. M. (2016). Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia. Journal of Abnormal Psychology, 125(3), 453–469. https://doi.org/10.1037/abn0000137CrossRefPubMedPubMedCentralGoogle Scholar
- Clepce, M., Gossler, A., Reich, K., Kornhuber, J., & Thuerauf, N. (2010). The relation between depression, anhedonia and olfactory hedonic estimates—A pilot study in major depression. Neuroscience Letters, 471(3), 139–143. https://doi.org/10.1016/j.neulet.2010.01.027CrossRefPubMedGoogle Scholar
- Collins, A., & Frank, M. J. (2018). Within and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proceeding of the National Academy of Sciences, 115, 201720963.CrossRefGoogle Scholar
- Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working memory contributions to reinforcement learning impairments in schizophrenia. The Journal of Neuroscience, 34(41), 13747–13756. https://doi.org/10.1523/JNEUROSCI.0989-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
- Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. The European Journal of Neuroscience, 35(7), 1024–1035. https://doi.org/10.1111/j.1460-9568.2011.07980.xCrossRefPubMedPubMedCentralGoogle Scholar
- Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017). Interactions among working memory, reinforcement learning, and effort in value-based choice: A new paradigm and selective deficits in schizophrenia. Biological Psychiatry, 82(6), 431–439. https://doi.org/10.1016/j.biopsych.2017.05.017CrossRefPubMedPubMedCentralGoogle Scholar
- Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load strengthens reward prediction errors. The Journal of Neuroscience, 37(16), 4332–4342. https://doi.org/10.1523/JNEUROSCI.2700-16.2017CrossRefPubMedPubMedCentralGoogle Scholar
- Conen, K. E., & Padoa-Schioppa, C. (2016). The dynamic nature of value-based decisions. Nature Neuroscience, 19(7), 866–867. https://doi.org/10.1038/nn.4329CrossRefPubMedPubMedCentralGoogle Scholar
- Connolly, K. R., & Thase, M. E. (2012). Emerging drugs for major depressive disorder. Expert Opinion on Emerging Drugs, 17(1), 105–126. https://doi.org/10.1517/14728214.2012.660146CrossRefPubMedPubMedCentralGoogle Scholar
- Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22(11), 4563–4567.PubMedCrossRefPubMedCentralGoogle Scholar
- Cools, R., Lewis, S. J., Clark, L., Barker, R. A., & Robbins, T. W. (2007). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology, 32(1), 180–189.PubMedCrossRefPubMedCentralGoogle Scholar
- Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Ponto, L. L. B., & Hichwa, R. D. (2001). Neural mechanisms of anhedonia in schizophrenia. Journal of the American Medical Association, 286(4), 427–435.PubMedCrossRefPubMedCentralGoogle Scholar
- Croxson, P. L., Walton, M. E., Boorman, E. D., Rushworth, M. F., & Bannerman, D. M. (2014). Unilateral medial frontal cortex lesions cause a cognitive decision-making deficit in rats. The European Journal of Neuroscience, 40(12), 3757–3765. https://doi.org/10.1111/ejn.12751CrossRefPubMedPubMedCentralGoogle Scholar
- Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E., & Rushworth, M. F. (2009). Effort-based cost-benefit valuation and the human brain. The Journal of Neuroscience, 29(14), 4531–4541.PubMedPubMedCentralCrossRefGoogle Scholar
- Culbreth, A., Westbrook, A., & Barch, D. (2016). Negative symptoms are associated with an increased subjective cost of cognitive effort. Journal of Abnormal Psychology, 125(4), 528–536. https://doi.org/10.1037/abn0000153CrossRefPubMedPubMedCentralGoogle Scholar
- Culbreth, A. J., Gold, J. M., Cools, R., & Barch, D. M. (2016). Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophrenia Bulletin, 42(2), 484–493. https://doi.org/10.1093/schbul/sbv075CrossRefPubMedPubMedCentralGoogle Scholar
- Culbreth, A. J., Westbrook, A., Daw, N. D., Botvinick, M., & Barch, D. M. (2016). Reduced model-based decision-making in schizophrenia. Journal of Abnormal Psychology, 125(6), 777–787. https://doi.org/10.1037/abn0000164CrossRefPubMedPubMedCentralGoogle Scholar
- Culbreth, A. J., Westbrook, A., Xu, Z., Barch, D. M., & Waltz, J. A. (2016). Intact ventral striatal prediction error signaling in medicated schizophrenia patients. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 474–483. https://doi.org/10.1016/j.bpsc.2016.07.007CrossRefGoogle Scholar
- Deisenhammer, E. A., Schmid, S. K., Kemmler, G., Moser, B., & Delazer, M. (2018). Decision making under risk and under ambiguity in depressed suicide attempters, depressed non-attempters and healthy controls. Journal of Affective Disorders, 226, 261–266. https://doi.org/10.1016/j.jad.2017.10.012CrossRefPubMedPubMedCentralGoogle Scholar
- Dichter, G. S., Kozink, R. V., McClernon, F. J., & Smoski, M. J. (2012). Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. Journal of Affective Disorders, 136(3), 1126–1134. https://doi.org/10.1016/j.jad.2011.09.048CrossRefPubMedPubMedCentralGoogle Scholar
- Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., & Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and Anxiety, 27(9), 859–863. https://doi.org/10.1002/da.20690CrossRefPubMedPubMedCentralGoogle Scholar
- Docx, L., de la Asuncion, J., Sabbe, B., Hoste, L., Baeten, R., Warnaerts, N., & Morrens, M. (2015). Effort discounting and its association with negative symptoms in schizophrenia. Cognitive Neuropsychiatry, 20(2), 172–185. https://doi.org/10.1080/13546805.2014.993463CrossRefPubMedPubMedCentralGoogle Scholar
- Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.PubMedPubMedCentralCrossRefGoogle Scholar
- Dowd, E. C., & Barch, D. M. (2012). Pavlovian reward prediction and receipt in schizophrenia: Relationship to anhedonia. PLoS One, 7(5), e35622. https://doi.org/10.1371/journal.pone.0035622CrossRefPubMedPubMedCentralGoogle Scholar
- Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M. (2016). Probabilistic reinforcement learning in patients with schizophrenia: Relationships to anhedonia and avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 460–473. https://doi.org/10.1016/j.bpsc.2016.05.005CrossRefGoogle Scholar
- Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63.PubMedCrossRefPubMedCentralGoogle Scholar
- Fervaha, G., Agid, O., Foussias, G., & Remington, G. (2013). Impairments in both reward and punishment guided reinforcement learning in schizophrenia. Schizophrenia Research, 150(2–3), 592–593. https://doi.org/10.1016/j.schres.2013.08.012CrossRefPubMedPubMedCentralGoogle Scholar
- Fervaha, G., Graff-Guerrero, A., Zakzanis, K. K., Foussias, G., Agid, O., & Remington, G. (2013). Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. Journal of Psychiatric Research, 47(11), 1590–1596. https://doi.org/10.1016/j.jpsychires.2013.08.003CrossRefPubMedPubMedCentralGoogle Scholar
- Fletcher, K., Parker, G., Paterson, A., Fava, M., Iosifescu, D., & Pizzagalli, D. A. (2015). Anhedonia in melancholic and non-melancholic depressive disorders. Journal of Affective Disorders, 184, 81–88. https://doi.org/10.1016/j.jad.2015.05.028CrossRefPubMedPubMedCentralGoogle Scholar
- Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 50–58. https://doi.org/10.1016/j.neuroimage.2014.06.058CrossRefPubMedPubMedCentralGoogle Scholar
- Foti, D., & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 1–8. https://doi.org/10.1016/j.biopsycho.2008.12.004CrossRefPubMedPubMedCentralGoogle Scholar
- Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2011). Abnormal neural sensitivity to monetary gains versus losses among adolescents at risk for depression. Journal of Abnormal Child Psychology, 39(7), 913–924. https://doi.org/10.1007/s10802-011-9503-9CrossRefPubMedPubMedCentralGoogle Scholar
- Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940–1943.CrossRefGoogle Scholar
- Fusar-Poli, P., & Meyer-Lindenberg, A. (2013). Striatal presynaptic dopamine in schizophrenia, part II: Meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophrenia Bulletin, 39(1), 33–42. https://doi.org/10.1093/schbul/sbr180CrossRefPubMedPubMedCentralGoogle Scholar
- Gilleen, J., Shergill, S. S., & Kapur, S. (2014). Impaired subjective well-being in schizophrenia is associated with reduced anterior cingulate activity during reward processing. Psychological Medicine, 1–12. https://doi.org/10.1017/S0033291714001718PubMedCrossRefPubMedCentralGoogle Scholar
- Gold, J. M., Barch, D. M., Carter, C. S., Dakin, S., Luck, S. J., MacDonald, A. W., 3rd, … Strauss, M. (2012). Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 38(1), 144–152. https://doi.org/10.1093/schbul/sbr142CrossRefPubMedPubMedCentralGoogle Scholar
- Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2014). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective, & Behavioral Neuroscience. https://doi.org/10.3758/s13415-014-0308-5CrossRefGoogle Scholar
- Gold, J. M., Strauss, G. P., Waltz, J. A., Robinson, B. M., Brown, J. K., & Frank, M. J. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2012.12.022PubMedPubMedCentralCrossRefGoogle Scholar
- Gold, J. M., Waltz, J. A., Matveeva, T. M., Kasanova, Z., Strauss, G. P., Herbener, E. S., … Frank, M. J. (2012). Negative symptoms and the failure to represent the expected reward value of actions: Behavioral and computational modeling evidence. Archives of General Psychiatry, 69(2), 129–138. https://doi.org/10.1001/archgenpsychiatry.2011.1269CrossRefPubMedPubMedCentralGoogle Scholar
- Gorka, S. M., Burkhouse, K. L., Afshar, K., & Phan, K. L. (2017). Error-related brain activity and internalizing disorder symptom dimensions in depression and anxiety. Depression and Anxiety, 34(11), 985–995. https://doi.org/10.1002/da.22648CrossRefPubMedPubMedCentralGoogle Scholar
- Gorka, S. M., Huggins, A. A., Fitzgerald, D. A., Nelson, B. D., Phan, K. L., & Shankman, S. A. (2014). Neural response to reward anticipation in those with depression with and without panic disorder. Journal of Affective Disorders, 164, 50–56. https://doi.org/10.1016/j.jad.2014.04.019CrossRefPubMedPubMedCentralGoogle Scholar
- Gotlib, I. H., Sivers, H., Gabrieli, J. D., Whitfield-Gabrieli, S., Goldin, P., Minor, K. L., & Canli, T. (2005). Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. Neuroreport, 16(16), 1731–1734.Google Scholar
- Green, M. F., Satz, P., Ganzell, S., & Vaclav, J. F. (1992). Wisconsin Card Sorting Test performance in schizophrenia: Remediation of a stubborn deficit. The American Journal of Psychiatry, 149(1), 62–67.PubMedCrossRefPubMedCentralGoogle Scholar
- Greenberg, T., Chase, H. W., Almeida, J. R., Stiffler, R., Zevallos, C. R., Aslam, H. A., … Phillips, M. L. (2015). Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: Findings from the EMBARC study. The American Journal of Psychiatry, 172(9), 881–891. https://doi.org/10.1176/appi.ajp.2015.14050594CrossRefPubMedPubMedCentralGoogle Scholar
- Grimm, O., Vollstadt-Klein, S., Krebs, L., Zink, M., & Smolka, M. N. (2012). Reduced striatal activation during reward anticipation due to appetite-provoking cues in chronic schizophrenia: A fMRI study. Schizophrenia Research, 134(2–3), 151–157. https://doi.org/10.1016/j.schres.2011.11.027CrossRefPubMedPubMedCentralGoogle Scholar
- Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83(5), 1019–1039.PubMedPubMedCentralCrossRefGoogle Scholar
- Hall, G. B., Milne, A. M., & Macqueen, G. M. (2014). An fMRI study of reward circuitry in patients with minimal or extensive history of major depression. European Archives of Psychiatry and Clinical Neuroscience, 264(3), 187–198. https://doi.org/10.1007/s00406-013-0437-9CrossRefPubMedPubMedCentralGoogle Scholar
- Hardin, M. G., Schroth, E., Pine, D. S., & Ernst, M. (2007). Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences. Journal of Child Psychology and Psychiatry, 48(5), 446–454.PubMedCrossRefGoogle Scholar
- Hartmann, M. N., Hager, O. M., Reimann, A. V., Chumbley, J. R., Kirschner, M., Seifritz, E., … Kaiser, S. (2014). Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbu102PubMedPubMedCentralCrossRefGoogle Scholar
- Hartmann-Riemer, M. N., Aschenbrenner, S., Bossert, M., Westermann, C., Seifritz, E., Tobler, P. N., … Kaiser, S. (2017). Deficits in reinforcement learning but no link to apathy in patients with schizophrenia. Scientific Reports, 7, 40352. https://doi.org/10.1038/srep40352CrossRefPubMedPubMedCentralGoogle Scholar
- Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of Royal Society B: Biological Sciences, 362(1485), 1601–1613.CrossRefGoogle Scholar
- Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biological Psychiatry, 64(1), 62–69.PubMedPubMedCentralCrossRefGoogle Scholar
- Heerey, E. A., & Gold, J. M. (2007). Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. Journal of Abnormal Psychology, 116(2), 268–278.PubMedCrossRefPubMedCentralGoogle Scholar
- Hegedus, K. M., Szkaliczki, A., Gal, B. I., Ando, B., Janka, Z., & Almos, P. Z. (2018). Decision-making performance of depressed patients within 72 h following a suicide attempt. Journal of Affective Disorders, 235, 583–588. https://doi.org/10.1016/j.jad.2018.04.082CrossRefPubMedPubMedCentralGoogle Scholar
- Henderson, D., Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., … MacDonald, A. W., 3rd. (2012). Optimization of a goal maintenance task for use in clinical applications. Schizophrenia Bulletin, 38(1), 104–113. https://doi.org/10.1093/schbul/sbr172CrossRefPubMedPubMedCentralGoogle Scholar
- Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward fails to alter response bias in depression. Journal of Abnormal Psychology, 103, 460–466.PubMedCrossRefPubMedCentralGoogle Scholar
- Hernaus, D., Gold, J. M., Waltz, J. A., & Frank, M. J. (2018). Impaired expected value computations coupled with overreliance on stimulus-response learning in schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2018.03.014Google Scholar
- Hershenberg, R., Satterthwaite, T. D., Daldal, A., Katchmar, N., Moore, T. M., Kable, J. W., & Wolf, D. H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. Journal of Affective Disorders, 196, 97–100. https://doi.org/10.1016/j.jad.2016.02.003CrossRefPubMedPubMedCentralGoogle Scholar
- Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., & Gluck, M. A. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105. https://doi.org/10.1097/WNN.0b013e3181df3048CrossRefPubMedGoogle Scholar
- Herzallah, M. M., Moustafa, A. A., Natsheh, J. Y., Danoun, O. A., Simon, J. R., Tayem, Y. I., … Gluck, M. A. (2013). Depression impairs learning, whereas the selective serotonin reuptake inhibitor, paroxetine, impairs generalization in patients with major depressive disorder. Journal of Affective Disorders, 151(2), 484–492. https://doi.org/10.1016/j.jad.2013.06.030CrossRefPubMedPubMedCentralGoogle Scholar
- Hillman, K. L., & Bilkey, D. K. (2012). Neural encoding of competitive effort in the anterior cingulate cortex. Nature Neuroscience, 15(9), 1290–1297. https://doi.org/10.1038/nn.3187CrossRefPubMedPubMedCentralGoogle Scholar
- Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model. Psychological Review, 122(1), 54–83. https://doi.org/10.1037/a0038339CrossRefPubMedPubMedCentralGoogle Scholar
- Hosking, J. G., Cocker, P. J., & Winstanley, C. A. (2015). Prefrontal cortical inactivations decrease willingness to expend cognitive effort on a rodent cost/benefit decision-making task. Cerebral Cortex. https://doi.org/10.1093/cercor/bhu321PubMedCrossRefPubMedCentralGoogle Scholar
- Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., & Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Archives of General Psychiatry, 69(8), 776–786. https://doi.org/10.1001/archgenpsychiatry.2012.169CrossRefPubMedPubMedCentralGoogle Scholar
- Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophrenia Bulletin, 35(3), 549–562. https://doi.org/10.1093/schbul/sbp006CrossRefPubMedPubMedCentralGoogle Scholar
- Huang, J., Yang, X. H., Lan, Y., Zhu, C. Y., Liu, X. Q., Wang, Y. F., … Chan, R. C. (2016). Neural substrates of the impaired effort expenditure decision making in schizophrenia. Neuropsychology, 30(6), 685–696. https://doi.org/10.1037/neu0000284CrossRefPubMedGoogle Scholar
- Insel, C., Reinen, J., Weber, J., Wager, T. D., Jarskog, L. F., Shohamy, D., & Smith, E. E. (2014). Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 189–201. https://doi.org/10.3758/s13415-014-0261-3CrossRefGoogle Scholar
- Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
- Jazbec, S., McClure, E., Hardin, M., Pine, D. S., & Ernst, M. (2005). Cognitive control under contingencies in anxious and depressed adolescents: An antisaccade task. Biological Psychiatry, 58(8), 632–639. https://doi.org/10.1016/j.biopsych.2005.04.010CrossRefPubMedPubMedCentralGoogle Scholar
- Jazbec, S., Pantelis, C., Robbins, T., Weickert, T., Weinberger, D. R., & Goldberg, T. E. (2007). Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: Impact of distractors. Schizophrenia Research, 89(1–3), 339–349.PubMedCrossRefPubMedCentralGoogle Scholar
- Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27(33), 8877–8884.PubMedPubMedCentralCrossRefGoogle Scholar
- Juckel, G., Friedel, E., Koslowski, M., Witthaus, H., Ozgurdal, S., Gudlowski, Y., … Schlagenhauf, F. (2012). Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology, 66(1), 50–56. https://doi.org/10.1159/000337130CrossRefPubMedPubMedCentralGoogle Scholar
- Juckel, G., Schlagenhauf, F., Koslowski, M., Filonov, D., Wustenberg, T., Villringer, A., … Heinz, A. (2006). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology, 187(2), 222–228.PubMedCrossRefPubMedCentralGoogle Scholar
- Kamath, V., Lasutschinkow, P., Ishizuka, K., & Sawa, A. (2018). Olfactory functioning in first-episode psychosis. Schizophrenia Bulletin, 44(3), 672–680. https://doi.org/10.1093/schbul/sbx107CrossRefPubMedPubMedCentralGoogle Scholar
- Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58(11), 843–853. https://doi.org/10.1016/j.biopsych.2005.05.019CrossRefPubMedPubMedCentralGoogle Scholar
- Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2018.17101124PubMedCrossRefPubMedCentralGoogle Scholar
- Kerestes, R., Segreti, A. M., Pan, L. A., Phillips, M. L., Birmaher, B., Brent, D. A., & Ladouceur, C. D. (2016). Altered neural function to happy faces in adolescents with and at risk for depression. Journal of Affective Disorders, 192, 143–152. https://doi.org/10.1016/j.jad.2015.12.013CrossRefPubMedPubMedCentralGoogle Scholar
- Keri, S., Nagy, O., Kelemen, O., Myers, C. E., & Gluck, M. A. (2005). Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia. Schizophrenia Research, 77(2–3), 321–328.PubMedCrossRefPubMedCentralGoogle Scholar
- Kim, M. S., Kang, B. N., & Lim, J. Y. (2016). Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model. Neuropsychiatric Disease and Treatment, 12, 1019–1027. https://doi.org/10.2147/NDT.S103821CrossRefPubMedPubMedCentralGoogle Scholar
- Kim, Y. T., Lee, K. U., & Lee, S. J. (2009). Deficit in decision-making in chronic, stable schizophrenia: From a reward and punishment perspective. Psychiatry Investigation, 6(1), 26–33.PubMedPubMedCentralCrossRefGoogle Scholar
- Kluge, A., Kirschner, M., Hager, O. M., Bischof, M., Habermeyer, B., Seifritz, E., … Kaiser, S. (2018). Combining actigraphy, ecological momentary assessment and neuroimaging to study apathy in patients with schizophrenia. Schizophrenia Research, 195, 176–182. https://doi.org/10.1016/j.schres.2017.09.034CrossRefPubMedPubMedCentralGoogle Scholar
- Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686–692. https://doi.org/10.1016/j.biopsych.2007.07.023CrossRefPubMedPubMedCentralGoogle Scholar
- Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683–3687.PubMedCrossRefPubMedCentralGoogle Scholar
- Kring, A. M., & Barch, D. M. (2014). The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral outputs. European Neuropsychopharmacology, 24(5), 725–736. https://doi.org/10.1016/j.euroneuro.2013.06.007CrossRefPubMedPubMedCentralGoogle Scholar
- Kring, A. M., & Moran, E. K. (2008). Emotional response deficits in schizophrenia: Insights from affective science. Schizophrenia Bulletin, 34(5), 819–834.PubMedPubMedCentralCrossRefGoogle Scholar
- Kringelbach, M. L., & Berridge, K. C. (2017). The affective core of emotion: Linking pleasure, subjective well-being, and optimal metastability in the brain. Emotion Review, 9(3), 191–199. https://doi.org/10.1177/1754073916684558CrossRefPubMedPubMedCentralGoogle Scholar
- Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123(2), 287–297. https://doi.org/10.1037/a0036285CrossRefPubMedPubMedCentralGoogle Scholar
- Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., … Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43(7), 1581–1588. https://doi.org/10.1038/s41386-018-0032-xCrossRefPubMedPubMedCentralGoogle Scholar
- Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., & Steele, J. D. (2008). Abnormal temporal difference reward-learning signals in major depression. Brain: A Journal of Neurology, 131(Pt 8), 2084–2093. https://doi.org/10.1093/brain/awn136CrossRefGoogle Scholar
- Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain: the effects of anticipation and execution. The Journal of Neuroscience, 33(14), 6160–6169. https://doi.org/10.1523/JNEUROSCI.4777-12.2013CrossRefPubMedPubMedCentralGoogle Scholar
- Lalanne, L., Ayranci, G., Kieffer, B. L., & Lutz, P. E. (2014). The kappa opioid receptor: from addiction to depression, and back. Frontiers in Psychiatry, 5, 170. https://doi.org/10.3389/fpsyt.2014.00170CrossRefPubMedPubMedCentralGoogle Scholar
- Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology, 36(1), 316–338. https://doi.org/10.1038/npp.2010.156CrossRefPubMedPubMedCentralGoogle Scholar
- Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., … Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage: Clinical, 2, 590–599. https://doi.org/10.1016/j.nicl.2013.04.010CrossRefGoogle Scholar
- Liu, W. H., Roiser, J. P., Wang, L. Z., Zhu, Y. H., Huang, J., Neumann, D. L., … Chan, R. C. K. (2016). Anhedonia is associated with blunted reward sensitivity in first-degree relatives of patients with major depression. Journal of Affective Disorders, 190, 640–648. https://doi.org/10.1016/j.jad.2015.10.050CrossRefPubMedPubMedCentralGoogle Scholar
- Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53, 213–220. https://doi.org/10.1016/j.neuropsychologia.2013.11.023CrossRefPubMedPubMedCentralGoogle Scholar
- Liverant, G. I., Sloan, D. M., Pizzagalli, D. A., Harte, C. B., Kamholz, B. W., Rosebrock, L. E., … Kaplan, G. B. (2014). Associations among smoking, anhedonia, and reward learning in depression. Behavior Therapy, 45(5), 651–663. https://doi.org/10.1016/j.beth.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
- Llerena, K., Wynn, J. K., Hajcak, G., Green, M. F., & Horan, W. P. (2016). Patterns and reliability of EEG during error monitoring for internal versus external feedback in schizophrenia. International Journal of Psychophysiology, 105, 39–46. https://doi.org/10.1016/j.ijpsycho.2016.04.012CrossRefPubMedPubMedCentralGoogle Scholar
- Luking, K. R., Neiman, J. S., Luby, J. L., & Barch, D. M. (2017). Reduced hedonic capacity/approach motivation relates to blunted responsivity to gain and loss feedback in children. Journal of Clinical Child and Adolescent Psychology, 46(3), 450–462. https://doi.org/10.1080/15374416.2015.1012721CrossRefPubMedPubMedCentralGoogle Scholar
- Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016a). Depression risk predicts blunted neural responses to gains and enhanced responses to losses in healthy children. Journal of the American Academy of Child and Adolescent Psychiatry, 55(4), 328–337. https://doi.org/10.1016/j.jaac.2016.01.007CrossRefPubMedPubMedCentralGoogle Scholar
- Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016b). Reward processing and risk for depression across development. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2016.04.002PubMedPubMedCentralCrossRefGoogle Scholar
- MacDonald, A.W., III, Patzelt, E., Kurth-Nelson, Z., Barch, D. M., Carter, C. S., Gold, J. M., … Strauss, M. E. (in submission). Shared reversal learning impairments in schizophrenia and bipolar disorder reflect a failure to exploit rewards in computational model.Google Scholar
- Maddox, W. T., Gorlick, M. A., Worthy, D. A., & Beevers, C. G. (2012). Depressive symptoms enhance loss-minimization, but attenuate gain-maximization in history-dependent decision-making. Cognition, 125(1), 118–124. https://doi.org/10.1016/j.cognition.2012.06.011CrossRefPubMedPubMedCentralGoogle Scholar
- Maia, T. V. (2009). Reinforcement learning, conditioning, and the brain: Successes and challenges. Cognitive, Affective, & Behavioral Neuroscience, 9(4), 343–364. https://doi.org/10.3758/CABN.9.4.343CrossRefGoogle Scholar
- Mann, C. L., Footer, O., Chung, Y. S., Driscoll, L. L., & Barch, D. M. (2013). Spared and impaired aspects of motivated cognitive control in schizophrenia. Journal of Abnormal Psychology, 122(3), 745–755. https://doi.org/10.1037/a0033069CrossRefPubMedPubMedCentralGoogle Scholar
- Martinelli, C., Rigoli, F., Dolan, R. J., & Shergill, S. S. (2018). Decreased value-sensitivity in schizophrenia. Psychiatry Research, 259, 295–301. https://doi.org/10.1016/j.psychres.2017.10.031CrossRefPubMedPubMedCentralGoogle Scholar
- Massar, S. A., Libedinsky, C., Weiyan, C., Huettel, S. A., & Chee, M. W. (2015). Separate and overlapping brain areas encode subjective value during delay and effort discounting. NeuroImage, 120, 104–113. https://doi.org/10.1016/j.neuroimage.2015.06.080CrossRefPubMedPubMedCentralGoogle Scholar
- McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205(4), 667–677. https://doi.org/10.1007/s00213-009-1573-9CrossRefPubMedPubMedCentralGoogle Scholar
- McCabe, C., Woffindale, C., Harmer, C. J., & Cowen, P. J. (2012). Neural processing of reward and punishment in young people at increased familial risk of depression. Biological Psychiatry, 72(7), 588–594. https://doi.org/10.1016/j.biopsych.2012.04.034CrossRefPubMedPubMedCentralGoogle Scholar
- McCarthy, J. M., Treadway, M. T., Bennett, M. E., & Blanchard, J. J. (2016). Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 170(2–3), 278–284. https://doi.org/10.1016/j.schres.2015.12.017CrossRefPubMedPubMedCentralGoogle Scholar
- McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3), 1–8. https://doi.org/10.1016/j.jad.2009.04.022CrossRefPubMedPubMedCentralGoogle Scholar
- Medic, N., Ziauddeen, H., Vestergaard, M. D., Henning, E., Schultz, W., Farooqi, I. S., & Fletcher, P. C. (2014). Dopamine modulates the neural representation of subjective value of food in hungry subjects. The Journal of Neuroscience, 34(50), 16856–16864. https://doi.org/10.1523/JNEUROSCI.2051-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
- Meyer, A., Bress, J. N., Hajcak, G., & Gibb, B. E. (2018). Maternal depression is related to reduced error-related brain activity in child and adolescent offspring. Journal of Clinical Child and Adolescent Psychology, 47(2), 324–335. https://doi.org/10.1080/15374416.2016.1138405CrossRefPubMedPubMedCentralGoogle Scholar
- Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 21, 167–202.CrossRefGoogle Scholar
- Miller, J. M., Zanderigo, F., Purushothaman, P. D., DeLorenzo, C., Rubin-Falcone, H., Ogden, R. T., … Mann, J. J. (2018). Kappa opioid receptor binding in major depression: A pilot study. Synapse. https://doi.org/10.1002/syn.22042PubMedCrossRefPubMedCentralGoogle Scholar
- Minami, S., Satoyoshi, H., Ide, S., Inoue, T., Yoshioka, M., & Minami, M. (2017). Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment. Neuroscience Letters, 650, 72–76. https://doi.org/10.1016/j.neulet.2017.04.028CrossRefPubMedPubMedCentralGoogle Scholar
- Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822. https://doi.org/10.1001/archgenpsychiatry.2009.91CrossRefPubMedPubMedCentralGoogle Scholar
- Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947.PubMedCrossRefPubMedCentralGoogle Scholar
- Moran, E. K., Culbreth, A. J., & Barch, D. M. (2017). Ecological momentary assessment of negative symptoms in schizophrenia: Relationships to effort-based decision making and reinforcement learning. Journal of Abnormal Psychology, 126(1), 96–105. https://doi.org/10.1037/abn0000240CrossRefPubMedPubMedCentralGoogle Scholar
- Moran, E. K., Culbreth, A. J., Kandala, S., & Barch, D. M. (in submission). Reward anticipation in schizophrenia: neural and psychological factors.Google Scholar
- Morgan, J. K., Olino, T. M., McMakin, D. L., Ryan, N. D., & Forbes, E. E. (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52, 66–74. https://doi.org/10.1016/j.nbd.2012.03.039CrossRefPubMedPubMedCentralGoogle Scholar
- Morkl, S., Blesl, C., Jahanshahi, M., Painold, A., & Holl, A. K. (2016). Impaired probabilistic classification learning with feedback in patients with major depression. Neurobiology of Learning and Memory, 127, 48–55. https://doi.org/10.1016/j.nlm.2015.12.001CrossRefPubMedPubMedCentralGoogle Scholar
- Morris, R. W., Cyrzon, C., Green, M. J., Le Pelley, M. E., & Balleine, B. W. (2018). Impairments in action-outcome learning in schizophrenia. Translational Psychiatry, 8(1), 54. https://doi.org/10.1038/s41398-018-0103-0CrossRefPubMedPubMedCentralGoogle Scholar
- Morris, S. E., Holroyd, C. B., Mann-Wrobel, M. C., & Gold, J. M. (2011). Dissociation of response and feedback negativity in schizophrenia: Electrophysiological and computational evidence for a deficit in the representation of value. Frontiers in Human Neuroscience, 5, 123. https://doi.org/10.3389/fnhum.2011.00123CrossRefPubMedPubMedCentralGoogle Scholar
- Mote, J., Minzenberg, M. J., Carter, C. S., & Kring, A. M. (2014). Deficits in anticipatory but not consummatory pleasure in people with recent-onset schizophrenia spectrum disorders. Schizophrenia Research, 159(1), 76–79. https://doi.org/10.1016/j.schres.2014.07.048CrossRefPubMedPubMedCentralGoogle Scholar
- Mucci, A., Dima, D., Soricelli, A., Volpe, U., Bucci, P., Frangou, S., … Maj, M. (2015). Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychological Medicine, 45(8), 1765–1778. https://doi.org/10.1017/S0033291714002943CrossRefPubMedPubMedCentralGoogle Scholar
- Murphy, N. P. (2015). Dynamic measurement of extracellular opioid activity: Status quo, challenges, and significance in rewarded behaviors. ACS Chemical Neuroscience, 6(1), 94–107. https://doi.org/10.1021/cn500295qCrossRefPubMedPubMedCentralGoogle Scholar
- Must, A., Horvath, S., Nemeth, V. L., & Janka, Z. (2013). The Iowa Gambling Task in depression - What have we learned about sub-optimal decision-making strategies? Frontiers in Psychology, 4, 732. https://doi.org/10.3389/fpsyg.2013.00732CrossRefPubMedPubMedCentralGoogle Scholar
- Nelson, B. D., Kessel, E. M., Klein, D. N., & Shankman, S. A. (2018). Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology, 55(1). https://doi.org/10.1111/psyp.12892CrossRefGoogle Scholar
- Nelson, B. D., McGowan, S. K., Sarapas, C., Robison-Andrew, E. J., Altman, S. E., Campbell, M. L., … Shankman, S. A. (2013). Biomarkers of threat and reward sensitivity demonstrate unique associations with risk for psychopathology. Journal of Abnormal Psychology, 122(3), 662–671. https://doi.org/10.1037/a0033982CrossRefPubMedPubMedCentralGoogle Scholar
- Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. The American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2016.15121524PubMedCrossRefPubMedCentralGoogle Scholar
- Nelson, B. D., Shankman, S. A., & Proudfit, G. H. (2014). Intolerance of uncertainty mediates reduced reward anticipation in major depressive disorder. Journal of Affective Disorders, 158, 108–113. https://doi.org/10.1016/j.jad.2014.02.014CrossRefPubMedPubMedCentralGoogle Scholar
- Nestor, P. G., Choate, V., Niznikiewicz, M., Levitt, J. J., Shenton, M. E., & McCarley, R. W. (2014). Neuropsychology of reward learning and negative symptoms in schizophrenia. Schizophrenia Research, 159(2–3), 506–508. https://doi.org/10.1016/j.schres.2014.08.028CrossRefPubMedPubMedCentralGoogle Scholar
- Nielsen, M. O., Rostrup, E., Broberg, B. V., Wulff, S., & Glenthoj, B. (2018). Negative symptoms and reward disturbances in schizophrenia before and after antipsychotic monotherapy. Clinical EEG and Neuroscience, 49(1), 36–45. https://doi.org/10.1177/1550059417744120CrossRefPubMedGoogle Scholar
- Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Broberg, B. V., Lublin, H., … Glenthoj, B. (2012). Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Archives of General Psychiatry, 1–10. https://doi.org/10.1001/archgenpsychiatry.2012.847PubMedCrossRefGoogle Scholar
- Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthoj, B. (2012). Alterations of the brain reward system in antipsychotic naive schizophrenia patients. Biological Psychiatry, 71(10), 898–905. https://doi.org/10.1016/j.biopsych.2012.02.007CrossRefPubMedPubMedCentralGoogle Scholar
- O’Doherty, J. P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards and choices. Annals of the New York Academy of Sciences, 1121, 254–272.PubMedCrossRefPubMedCentralGoogle Scholar
- Olino, T. M., Silk, J. S., Osterritter, C., & Forbes, E. E. (2015). Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. Journal of Child and Adolescent Psychopharmacology, 25(9), 711–721. https://doi.org/10.1089/cap.2014.0165CrossRefPubMedPubMedCentralGoogle Scholar
- Otto, A. R., Skatova, A., Madlon-Kay, S., & Daw, N. D. (2015). Cognitive control predicts use of model-based reinforcement learning. Journal of Cognitive Neuroscience, 27(2), 319–333. https://doi.org/10.1162/jocn_a_00709CrossRefPubMedPubMedCentralGoogle Scholar
- Padoa-Schioppa, C., & Cai, X. (2011). The orbitofrontal cortex and the computation of subjective value: Consolidated concepts and new perspectives. Annals of the New York Academy of Sciences, 1239, 130–137. https://doi.org/10.1111/j.1749-6632.2011.06262.xCrossRefPubMedPubMedCentralGoogle Scholar
- Padoa-Schioppa, C., & Conen, K. E. (2017). Orbitofrontal cortex: A neural circuit for economic decisions. Neuron, 96(4), 736–754. https://doi.org/10.1016/j.neuron.2017.09.031CrossRefPubMedPubMedCentralGoogle Scholar
- Paradiso, S., Andreasen, N. C., Crespo-Facorro, B., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (2003). Emotions in unmedicated patients with schizophrenia during evaluation with positron emission tomography. The American Journal of Psychiatry, 160(10), 1775–1783.PubMedCrossRefPubMedCentralGoogle Scholar
- Park, I. H., Lee, B. C., Kim, J. J., Kim, J. I., & Koo, M. S. (2017). Effort-based reinforcement processing and functional connectivity underlying amotivation in medicated patients with depression and schizophrenia. The Journal of Neuroscience, 37(16), 4370–4380. https://doi.org/10.1523/JNEUROSCI.2524-16.2017PubMedPubMedCentralCrossRefGoogle Scholar
- Pechtel, P., Dutra, S. J., Goetz, E. L., & Pizzagalli, D. A. (2013). Blunted reward responsiveness in remitted depression. Journal of Psychiatric Research, 47(12), 1864–1869. https://doi.org/10.1016/j.jpsychires.2013.08.011CrossRefPubMedPubMedCentralGoogle Scholar
- Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43(1), 76–87. https://doi.org/10.1016/j.jpsychires.2008.03.001CrossRefPubMedPubMedCentralGoogle Scholar
- Plailly, J., d’Amato, T., Saoud, M., & Royet, J. P. (2006). Left temporo-limbic and orbital dysfunction in schizophrenia during odor familiarity and hedonicity judgments. NeuroImage, 29(1), 302–313.PubMedCrossRefGoogle Scholar
- Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L., & Dreher, J. C. (2010). Separate valuation subsystems for delay and effort decision costs. The Journal of Neuroscience, 30(42), 14080–14090. https://doi.org/10.1523/JNEUROSCI.2752-10.2010CrossRefPubMedPubMedCentralGoogle Scholar
- Radua, J., Schmidt, A., Borgwardt, S., Heinz, A., Schlagenhauf, F., McGuire, P., & Fusar-Poli, P. (2015). Ventral striatal activation during reward processing in psychosis: A neurofunctional meta-analysis. JAMA Psychiatry, 72(12), 1243–1251. https://doi.org/10.1001/jamapsychiatry.2015.2196CrossRefPubMedGoogle Scholar
- Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. The American Journal of Psychiatry, 166(8), 863–874.PubMedPubMedCentralCrossRefGoogle Scholar
- Rassovsky, Y., Green, M. F., Nuechterlein, K. H., Breitmeyer, B., & Mintz, J. (2005). Modulation of attention during visual masking in schizophrenia. The American Journal of Psychiatry, 162(8), 1533–1535.PubMedCrossRefGoogle Scholar
- Reddy, L. F., Horan, W. P., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., … Green, M. F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 1-psychometric characteristics of 5 paradigms. Schizophrenia Bulletin, 41(5), 1045–1054. https://doi.org/10.1093/schbul/sbv089CrossRefPubMedPubMedCentralGoogle Scholar
- Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P. (2016). Probabilistic reversal learning in schizophrenia: Stability of deficits and potential causal mechanisms. Schizophrenia Bulletin, 42(4), 942–951. https://doi.org/10.1093/schbul/sbv226CrossRefPubMedPubMedCentralGoogle Scholar
- Redlich, R., Dohm, K., Grotegerd, D., Opel, N., Zwitserlood, P., Heindel, W., … Dannlowski, U. (2015). Reward processing in unipolar and bipolar depression: A functional MRI study. Neuropsychopharmacology, 40(11), 2623–2631. https://doi.org/10.1038/npp.2015.110CrossRefPubMedPubMedCentralGoogle Scholar
- Reinen, J., Smith, E. E., Insel, C., Kribs, R., Shohamy, D., Wager, T. D., & Jarskog, L. F. (2014). Patients with schizophrenia are impaired when learning in the context of pursuing rewards. Schizophrenia Research, 152(1), 309–310. https://doi.org/10.1016/j.schres.2013.11.012CrossRefPubMedGoogle Scholar
- Reinen, J. M., Van Snellenberg, J. X., Horga, G., Abi-Dargham, A., Daw, N. D., & Shohamy, D. (2016). Motivational context modulates prediction error response in schizophrenia. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbw045PubMedPubMedCentralCrossRefGoogle Scholar
- Robinson, O. J., Cools, R., Carlisi, C. O., Sahakian, B. J., & Drevets, W. C. (2012). Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. The American Journal of Psychiatry, 169(2), 152–159.PubMedPubMedCentralCrossRefGoogle Scholar
- Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10), 2029–2040. https://doi.org/10.1017/S0033291713002535CrossRefPubMedPubMedCentralGoogle Scholar
- Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. The European Journal of Neuroscience, 1(1), 53–60.PubMedCrossRefPubMedCentralGoogle Scholar
- Rothkirch, M., Tonn, J., Kohler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147–1157. https://doi.org/10.1093/brain/awx025CrossRefPubMedPubMedCentralGoogle Scholar
- Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9(9), 1161–1168.PubMedCrossRefGoogle Scholar
- Rushworth, M. F., Behrens, T. E., Rudebeck, P. H., & Walton, M. E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168–176.PubMedCrossRefGoogle Scholar
- Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L., … Dolan, R. J. (2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74(8), 790–797. https://doi.org/10.1001/jamapsychiatry.2017.1713CrossRefPubMedPubMedCentralGoogle Scholar
- Rzepa, E., Fisk, J., & McCabe, C. (2017). Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. Journal of Psychopharmacology, 31(3), 303–311. https://doi.org/10.1177/0269881116681416CrossRefPubMedGoogle Scholar
- Salamone, J. D., Correa, M., Farrar, A., & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191(3), 461–482.PubMedCrossRefGoogle Scholar
- Salamone, J. D., Correa, M., Nunes, E. J., Randall, P. A., & Pardo, M. (2012). The behavioral pharmacology of effort-related choice behavior: Dopamine, adenosine and beyond. Journal of the Experimental Analysis of Behavior, 97(1), 125–146. https://doi.org/10.1901/jeab.2012.97-125CrossRefPubMedPubMedCentralGoogle Scholar
- Salamone, J. D., Correa, M., Yohn, S., Lopez Cruz, L., San Miguel, N., & Alatorre, L. (2016). The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behavioural Processes, 127, 3–17. https://doi.org/10.1016/j.beproc.2016.02.008CrossRefPubMedPubMedCentralGoogle Scholar
- Satterthwaite, T. D., Kable, J. W., Vandekar, L., Katchmar, N., Bassett, D. S., Baldassano, C. F., … Wolf, D. H. (2015). Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology, 40(9), 2258–2268. https://doi.org/10.1038/npp.2015.75CrossRefPubMedPubMedCentralGoogle Scholar
- Savitz, J. B., & Drevets, W. C. (2013). Neuroreceptor imaging in depression. Neurobiology of Disease, 52, 49–65. https://doi.org/10.1016/j.nbd.2012.06.001CrossRefPubMedGoogle Scholar
- Schlagenhauf, F., Huys, Q. J., Deserno, L., Rapp, M. A., Beck, A., Heinze, H. J., … Heinz, A. (2014). Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage, 89, 171–180. https://doi.org/10.1016/j.neuroimage.2013.11.034CrossRefPubMedPubMedCentralGoogle Scholar
- Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., … Heinz, A. (2009). Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions. Biological Psychiatry, 65(12), 1032–1039.PubMedCrossRefPubMedCentralGoogle Scholar
- Schneider, F., Habel, U., Reske, M., Toni, I., Falkai, P., & Shah, N. J. (2007). Neural substrates of olfactory processing in schizophrenia patients and their healthy relatives. Psychiatry Research, 155(2), 103–112.PubMedCrossRefPubMedCentralGoogle Scholar
- Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.PubMedCrossRefPubMedCentralGoogle Scholar
- Schultz, W. (2016a). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23–32.PubMedPubMedCentralGoogle Scholar
- Schultz, W. (2016b). Reward functions of the basal ganglia. Journal of Neural Transmission (Vienna), 123(7), 679–693. https://doi.org/10.1007/s00702-016-1510-0CrossRefGoogle Scholar
- Scinska, A., Sienkiewicz-Jarosz, H., Kuran, W., Ryglewicz, D., Rogowski, A., Wrobel, E., … Bienkowski, P. (2004). Depressive symptoms and taste reactivity in humans. Physiology & Behavior, 82(5), 899–904. https://doi.org/10.1016/j.physbeh.2004.07.012CrossRefGoogle Scholar
- Serper, M., Payne, E., Dill, C., Portillo, C., & Taliercio, J. (2017). Allocating effort and anticipating pleasure in schizophrenia: Relationship with real world functioning. European Psychiatry, 46, 57–64. https://doi.org/10.1016/j.eurpsy.2017.07.008CrossRefPubMedPubMedCentralGoogle Scholar
- Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: A biobehavioral study. Journal of Abnormal Psychology, 116(1), 95–104. https://doi.org/10.1037/0021-843X.116.1.95CrossRefPubMedPubMedCentralGoogle Scholar
- Shankman, S. A., Nelson, B. D., Sarapas, C., Robison-Andrew, E. J., Campbell, M. L., Altman, S. E., … Gorka, S. M. (2013). A psychophysiological investigation of threat and reward sensitivity in individuals with panic disorder and/or major depressive disorder. Journal of Abnormal Psychology, 122(2), 322–338. https://doi.org/10.1037/a0030747CrossRefPubMedPubMedCentralGoogle Scholar
- Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106, 1942–1947.PubMedPubMedCentralCrossRefGoogle Scholar
- Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007CrossRefPubMedPubMedCentralGoogle Scholar
- Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291. https://doi.org/10.1038/nn.4384CrossRefPubMedGoogle Scholar
- Sherdell, L., Waugh, C. E., & Gotlib, I. H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. Journal of Abnormal Psychology, 121(1), 51–60. https://doi.org/10.1037/a0024945CrossRefPubMedGoogle Scholar
- Siegert, R. J., Weatherall, M., & Bell, E. M. (2008). Is implicit sequence learning impaired in schizophrenia? A meta-analysis. Brain and Cognition, 67(3), 351–359. https://doi.org/10.1016/j.bandc.2008.02.005CrossRefPubMedPubMedCentralGoogle Scholar
- Smith, K. S., & Berridge, K. C. (2007). Opioid limbic circuit for reward: Interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. The Journal of Neuroscience, 27(7), 1594–1605.PubMedPubMedCentralCrossRefGoogle Scholar
- Smoski, M. J., Rittenberg, A., & Dichter, G. S. (2011). Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatry Research, 194(3), 263–270. https://doi.org/10.1016/j.pscychresns.2011.06.012PubMedCrossRefPubMedCentralGoogle Scholar
- Somlai, Z., Moustafa, A. A., Keri, S., Myers, C. E., & Gluck, M. A. (2011). General functioning predicts reward and punishment learning in schizophrenia. Schizophrenia Research, 127(1–3), 131–136. https://doi.org/10.1016/j.schres.2010.07.028CrossRefPubMedPubMedCentralGoogle Scholar
- Stepien, M., Manoliu, A., Kubli, R., Schneider, K., Tobler, P. N., Seifritz, E., … Kirschner, M. (2018). Investigating the association of ventral and dorsal striatal dysfunction during reward anticipation with negative symptoms in patients with schizophrenia and healthy individuals. PLoS One, 13(6), e0198215. https://doi.org/10.1371/journal.pone.0198215CrossRefPubMedPubMedCentralGoogle Scholar
- Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hagele, C., Suchotzki, K., … Strohle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677–688. https://doi.org/10.1177/0269881111416686CrossRefPubMedGoogle Scholar
- Strauss, G. P., Visser, K. F., Keller, W. R., Gold, J. M., & Buchanan, R. W. (2018). Anhedonia reflects impairment in making relative value judgments between positive and neutral stimuli in schizophrenia. Schizophrenia Research. https://doi.org/10.1016/j.schres.2018.02.016PubMedCrossRefGoogle Scholar
- Strauss, G. P., Whearty, K. M., Morra, L. F., Sullivan, S. K., Ossenfort, K. L., & Frost, K. H. (2016). Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a Progressive Ratio task. Schizophrenia Research, 170(1), 198–204. https://doi.org/10.1016/j.schres.2015.12.006CrossRefPubMedGoogle Scholar
- Stringaris, A., Vidal-Ribas Belil, P., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., … Consortium, Imagen. (2015). The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. The American Journal of Psychiatry, 172(12), 1215–1223. https://doi.org/10.1176/appi.ajp.2015.14101298CrossRefPubMedPubMedCentralGoogle Scholar
- Subramaniam, K., Hooker, C. I., Biagianti, B., Fisher, M., Nagarajan, S., & Vinogradov, S. (2015). Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function. NeuroImage: Clinical, 9, 153–163. https://doi.org/10.1016/j.nicl.2015.08.001CrossRefGoogle Scholar
- Suzuki, S., Cross, L., & O’Doherty, J. P. (2017). Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nature Neuroscience, 20(12), 1780–1786. https://doi.org/10.1038/s41593-017-0008-xCrossRefPubMedPubMedCentralGoogle Scholar
- Takamura, M., Okamoto, Y., Okada, G., Toki, S., Yamamoto, T., Ichikawa, N., … Yamawaki, S. (2017). Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuropsychopharmacology and Biological Psychiatry, 79(Pt B), 317–323. https://doi.org/10.1016/j.pnpbp.2017.07.006CrossRefGoogle Scholar
- Taylor, N., Hollis, J. P., Corcoran, S., Gross, R., Cuthbert, B., Swails, L. W., & Duncan, E. (2018). Impaired reward responsiveness in schizophrenia. Schizophrenia Research. https://doi.org/10.1016/j.schres.2018.02.057PubMedCrossRefPubMedCentralGoogle Scholar
- Taylor, S. F., Phan, K. L., Britton, J. C., & Liberzon, I. (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology, 30(5), 984–995.PubMedCrossRefPubMedCentralGoogle Scholar
- Tobia, M. J., Guo, R., Schwarze, U., Boehmer, W., Glascher, J., Finckh, B., … Sommer, T. (2014). Neural systems for choice and valuation with counterfactual learning signals. NeuroImage, 89, 57–69. https://doi.org/10.1016/j.neuroimage.2013.11.051CrossRefPubMedPubMedCentralGoogle Scholar
- Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553–558. https://doi.org/10.1037/a0028813CrossRefPubMedPubMedCentralGoogle Scholar
- Treadway, M. T., Buckholtz, J. W., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., … Zald, D. H. (2012). Dopaminergic mechanisms of individual differences in human effort-based decision-making. The Journal of Neuroscience, 32(18), 6170–6176. https://doi.org/10.1523/JNEUROSCI.6459-11.2012CrossRefPubMedPubMedCentralGoogle Scholar
- Treadway, M. T., Peterman, J. S., Zald, D. H., & Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 161(2–3), 382–385. https://doi.org/10.1016/j.schres.2014.11.024CrossRefPubMedPubMedCentralGoogle Scholar
- Tremeau, F., Antonius, D., Nolan, K., Butler, P., & Javitt, D. C. (2014). Immediate affective motivation is not impaired in schizophrenia. Schizophrenia Research, 159(1), 157–163. https://doi.org/10.1016/j.schres.2014.08.001CrossRefPubMedPubMedCentralGoogle Scholar
- Trifilieff, P., Feng, B., Urizar, E., Winiger, V., Ward, R. D., Taylor, K. M., … Javitch, J. A. (2013). Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Molecular Psychiatry. https://doi.org/10.1038/mp.2013.57PubMedPubMedCentralCrossRefGoogle Scholar
- Turnbull, O. H., Evans, C. E., Kemish, K., Park, S., & Bowman, C. H. (2006). A novel set-shifting modification of the iowa gambling task: Flexible emotion-based learning in schizophrenia. Neuropsychology, 20(3), 290–298.PubMedCrossRefPubMedCentralGoogle Scholar
- Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., & Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience. https://doi.org/10.1093/scan/nsu158PubMedPubMedCentralCrossRefGoogle Scholar
- Urban-Kowalczyk, M., Smigielski, J., & Kotlicka-Antczak, M. (2018). Overrated hedonic judgment of odors in patients with schizophrenia. CNS Neuroscience & Therapeutics. https://doi.org/10.1111/cns.12849CrossRefGoogle Scholar
- Vaidyanathan, U., Nelson, L. D., & Patrick, C. J. (2012). Clarifying domains of internalizing psychopathology using neurophysiology. Psychological Medicine, 42(3), 447–459. https://doi.org/10.1017/S0033291711001528CrossRefPubMedPubMedCentralGoogle Scholar
- Vanes, L. D., Mouchlianitis, E., Collier, T., Averbeck, B. B., & Shergill, S. S. (2018). Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychological Medicine, 1–10. https://doi.org/10.1017/S0033291718000041PubMedPubMedCentralCrossRefGoogle Scholar
- Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational models of anterior cingulate cortex: At the crossroads between prediction and effort. Frontiers in Neuroscience, 11, 316. https://doi.org/10.3389/fnins.2017.00316CrossRefPubMedPubMedCentralGoogle Scholar
- Vrieze, E., Pizzagalli, D. A., Demyttenaere, K., Hompes, T., Sienaert, P., de Boer, P., … Claes, S. (2013). Reduced reward learning predicts outcome in major depressive disorder. Biological Psychiatry, 73(7), 639–645. https://doi.org/10.1016/j.biopsych.2012.10.014CrossRefPubMedPubMedCentralGoogle Scholar
- Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56.PubMedCrossRefPubMedCentralGoogle Scholar
- Walsh, A. E. L., Browning, M., Drevets, W. C., Furey, M., & Harmer, C. J. (2018). Dissociable temporal effects of bupropion on behavioural measures of emotional and reward processing in depression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1742). https://doi.org/10.1098/rstb.2017.0030CrossRefGoogle Scholar
- Walter, H., Heckers, S., Kassubek, J., Erk, S., Frasch, K., & Abler, B. (2010). Further evidence for aberrant prefrontal salience coding in schizophrenia. Frontiers in Behavioral Neuroscience, 3, 62. https://doi.org/10.3389/neuro.08.062.2009CrossRefPubMedPubMedCentralGoogle Scholar
- Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. The Journal of Neuroscience, 23(16), 6475–6479.PubMedPubMedCentralCrossRefGoogle Scholar
- Waltz, J. A., Brown, J. K., Gold, J. M., Ross, T. J., Salmeron, B. J., & Stein, E. A. (2015). Probing the dynamic updating of value in schizophrenia using a sensory-specific satiety paradigm. Schizophrenia Bulletin, 41(5), 1115–1122. https://doi.org/10.1093/schbul/sbv034CrossRefPubMedPubMedCentralGoogle Scholar
- Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756–764.PubMedPubMedCentralCrossRefGoogle Scholar
- Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93(1–3), 296–303.PubMedPubMedCentralCrossRefGoogle Scholar
- Waltz, J. A., & Gold, J. M. (2016). Motivational deficits in schizophrenia and the representation of expected value. Current Topics in Behavioral Neurosciences, 27, 375–410. https://doi.org/10.1007/7854_2015_385CrossRefPubMedPubMedCentralGoogle Scholar
- Waltz, J. A., Kasanova, Z., Ross, T. J., Salmeron, B. J., McMahon, R. P., Gold, J. M., & Stein, E. A. (2013). The roles of reward, default, and executive control networks in set-shifting impairments in schizophrenia. PLoS One, 8(2), e57257. https://doi.org/10.1371/journal.pone.0057257CrossRefPubMedPubMedCentralGoogle Scholar
- Waltz, J. A., Schweitzer, J. B., Gold, J. M., Kurup, P. K., Ross, T. J., Salmeron, B. J., … Stein, E. A. (2009). Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology, 34(6), 1567–1577.PubMedCrossRefPubMedCentralGoogle Scholar
- Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35(12), 2427–2439. https://doi.org/10.1038/npp.2010.126CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, J., Huang, J., Yang, X. H., Lui, S. S., Cheung, E. F., & Chan, R. C. (2015). Anhedonia in schizophrenia: Deficits in both motivation and hedonic capacity. Schizophrenia Research, 168(1–2), 465–474. https://doi.org/10.1016/j.schres.2015.06.019CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, K. S., Smith, D. V., & Delgado, M. R. (2016). Using fMRI to study reward processing in humans: Past, present, and future. Journal of Neurophysiology, 115(3), 1664–1678. https://doi.org/10.1152/jn.00333.2015CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, L., LaBar, K. S., Smoski, M., Rosenthal, M. Z., Dolcos, F., Lynch, T. R., … McCarthy, G. (2008). Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Research, 163(2), 143–155. https://doi.org/10.1016/j.pscychresns.2007.10.004CrossRefPubMedPubMedCentralGoogle Scholar
- Weinberg, A., Liu, H., & Shankman, S. A. (2016). Blunted neural response to errors as a trait marker of melancholic depression. Biological Psychology, 113, 100–107. https://doi.org/10.1016/j.biopsycho.2015.11.012CrossRefPubMedPubMedCentralGoogle Scholar
- White, D. M., Kraguljac, N. V., Reid, M. A., & Lahti, A. C. (2015). Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: A combined magnetic resonance spectroscopy/functional imaging study. NPJ Schizophrenia, 1, 14001. https://doi.org/10.1038/npjschz.2014.1CrossRefPubMedPubMedCentralGoogle Scholar
- Whitmer, A. J., Frank, M. J., & Gotlib, I. H. (2012). Sensitivity to reward and punishment in major depressive disorder: Effects of rumination and of single versus multiple experiences. Cognition and Emotion, 26(8), 1475–1485. https://doi.org/10.1080/02699931.2012.682973CrossRefPubMedPubMedCentralGoogle Scholar
- Whitton, A. E., Kakani, P., Foti, D., Van’t Veer, A., Haile, A., Crowley, D. J., & Pizzagalli, D. A. (2016). Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 87–95. https://doi.org/10.1016/j.bpsc.2015.09.007CrossRefGoogle Scholar
- Whitton, A. E., Van’t Veer, A., Kakani, P., Dillon, D. G., Ironside, M. L., Haile, A., … Pizzagalli, D. A. (2017). Acute stress impairs frontocingulate activation during error monitoring in remitted depression. Psychoneuroendocrinology, 75, 164–172. https://doi.org/10.1016/j.psyneuen.2016.10.007CrossRefPubMedPubMedCentralGoogle Scholar
- Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 1455–1463. https://doi.org/10.1038/mp.2016.72CrossRefPubMedPubMedCentralGoogle Scholar
- Wolf, D. H., Satterthwaite, T. D., Kantrowitz, J. J., Katchmar, N., Vandekar, L., Elliott, M. A., & Ruparel, K. (2014). Amotivation in schizophrenia: Integrated assessment with behavioral, clinical, and imaging measures. Schizophrenia Bulletin, 40(6), 1328–1337. https://doi.org/10.1093/schbul/sbu026CrossRefPubMedPubMedCentralGoogle Scholar
- Yan, C., Su, L., Wang, Y., Xu, T., Yin, D. Z., Fan, M. X., … Chan, R. C. (2016). Multivariate neural representations of value during reward anticipation and consummation in the human orbitofrontal cortex. Scientific Reports, 6, 29079. https://doi.org/10.1038/srep29079CrossRefPubMedPubMedCentralGoogle Scholar
- Yang, X. H., Huang, J., Lan, Y., Zhu, C. Y., Liu, X. Q., Wang, Y. F., … Chan, R. C. (2016). Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 52–59. https://doi.org/10.1016/j.pnpbp.2015.07.006CrossRefGoogle Scholar
- Yang, X. H., Huang, J., Zhu, C. Y., Wang, Y. F., Cheung, E. F., Chan, R. C., & Xie, G. R. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research, 220(3), 874–882. https://doi.org/10.1016/j.psychres.2014.08.056CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang, L., Tang, J., Dong, Y., Ji, Y., Tao, R., Liang, Z., … Wang, K. (2015). Similarities and differences in decision-making impairments between autism spectrum disorder and schizophrenia. Frontiers in Behavioral Neuroscience, 9, 259. https://doi.org/10.3389/fnbeh.2015.00259CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang, R., Picchioni, M., Allen, P., & Toulopoulou, T. (2016). Working memory in unaffected relatives of patients with schizophrenia: A meta-analysis of functional magnetic resonance imaging studies. Schizophrenia Bulletin, 42(4), 1068–1077. https://doi.org/10.1093/schbul/sbv221CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L., & Wang, J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2), 531–539. https://doi.org/10.1016/j.jad.2013.06.039CrossRefPubMedPubMedCentralGoogle Scholar
- Zou, L. Q., Zhou, H. Y., Lui, S. S. Y., Wang, Y., Wang, Y., Gan, J., … Chan, R. C. K. (2018). Olfactory identification deficit and its relationship with hedonic traits in patients with first-episode schizophrenia and individuals with schizotypy. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 83, 137–141. https://doi.org/10.1016/j.pnpbp.2018.01.014CrossRefGoogle Scholar