Advertisement

Pathways to Motivational Impairments in Psychopathology: Common Versus Unique Elements Across Domains

  • Deanna M. BarchEmail author
  • David Pagliaccio
  • Katherine Luking
  • Erin K. Moran
  • Adam J. Culbreth
Chapter
Part of the Nebraska Symposium on Motivation book series (NSM, volume 66)

Abstract

Our ability as humans to engage in goal-directed actions that allow us to obtain outcomes that we desire is a core component of life satisfaction and achievement. Sadly, many forms of mental illness involve impairments in varying facets of motivation that are important contributors to the all too frequent impaired life function and reduced quality of life experienced by such individuals. As such, both the field of psychopathology research broadly and the Research Domain Criteria (RDoC) initiative have recognized the centrality of examining motivation and incentive processing in psychopathology. This review will focus on the types of motivational impairments seen in disorders such as depression and schizophrenia. Some individuals with depression do not engage in occupational, educational, or social behaviors that they might participate in when not depressed and may spend much of their time alone and engaged in very passive activities (sleeping, watching TV, etc.). Similarly, in schizophrenia, motivational impairments can also take the form of reduced efforts to engage in occupational, educational, or social experiences. In this review, we argue that elements of the final common pathway to impairments in motivation in depression and schizophrenia may be shared and are likely to involve deficits in what can be referred to as effort-cost decision-making (ECDM). This hypothesis suggests that a proximal cause of reduced engagement in occupational, educational, and social pursuits in both depression and schizophrenia is a reduced willingness to exert effort to obtain potentially rewarding or positive outcomes. However, we also argue that these ECDM deficits in depression and schizophrenia reflect differing distal mechanisms. More specifically, we argue that ECDM impairments in depression may be strongly related to reductions in hedonic experience of reward and pleasure, while ECDM deficits in schizophrenia may more strongly reflect difficulties with cognitive control and internal representation of future or past events and use of incentive information that is not currently available in the environment.

Keywords

Motivation Reward Depression Schizophrenia Effort Learning 

Notes

Acknowledgments

Parts of this chapter have been rePrinted with permission from Oxford University Press and Cambridge University Press and come from Barch, D. M., Pagliaccio, D., & Luking, K. (2019). Positive Valence System Dysregulation in Psychosis: A comparative Analysis. In Gruber, J. (Ed). Oxford Handbook of Positive Emotion and Psychopathology and Barch, D. M., Pagliaccio, D., & Luking, K. (2018). Motivational Impairments in Psychotic and Depressive Pathology: Psychological and Neural Mechanisms. In Sangha, S., & Foti, D., Eds. Neurobiology of Abnormal Emotion and Motivated Behaviors: Integrating Animal and Human Research. Pages 278–304.

References

  1. Admon, R., Kaiser, R. H., Dillon, D. G., Beltzer, M., Goer, F., Olson, D. P., … Pizzagalli, D. A. (2017). Dopaminergic enhancement of striatal response to reward in major depression. The American Journal of Psychiatry, 174(4), 378–386.  https://doi.org/10.1176/appi.ajp.2016.16010111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahern, E., & Semkovska, M. (2017). Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology, 31(1), 52–72.  https://doi.org/10.1037/neu0000319CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ait Oumeziane, B., & Foti, D. (2016). Reward-related neural dysfunction across depression and impulsivity: A dimensional approach. Psychophysiology, 53(8), 1174–1184.  https://doi.org/10.1111/psyp.12672CrossRefPubMedPubMedCentralGoogle Scholar
  4. Albrecht, M. A., Waltz, J. A., Frank, M. J., & Gold, J. M. (2016). Probability and magnitude evaluation in schizophrenia. Schizophrenia Research: Cognition, 5, 41–46.  https://doi.org/10.1016/j.scog.2016.06.003CrossRefGoogle Scholar
  5. Auster, T. L., Cohen, A. S., Callaway, D. A., & Brown, L. A. (2014). Objective and subjective olfaction across the schizophrenia spectrum. Psychiatry, 77(1), 57–66.  https://doi.org/10.1521/psyc.2014.77.1.57CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bakic, J., Pourtois, G., Jepma, M., Duprat, R., De Raedt, R., & Baeken, C. (2016). Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning. Depression and Anxiety.  https://doi.org/10.1002/da.22576PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bansal, S., Robinson, B. M., Geng, J. J., Leonard, C. J., Hahn, B., Luck, S. J., & Gold, J. M. (2018). The impact of reward on attention in schizophrenia. Schizophrenia Research: Cognition, 12, 66–73.  https://doi.org/10.1016/j.scog.2018.05.001CrossRefGoogle Scholar
  8. Barch, D. M., Carter, C. S., Gold, J. M., Johnson, S. L., Kring, A. M., MacDonald, A. W., … Strauss, M. E. (2017). Explicit and implicit reinforcement learning across the psychosis spectrum. Journal of Abnormal Psychology, 126(5), 694–711.  https://doi.org/10.1037/abn0000259CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barch, D. M., & Ceaser, A. E. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Science, 16, 27–34.CrossRefGoogle Scholar
  10. Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919–934.  https://doi.org/10.1093/schbul/sbq068CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barch, D. M., Oquendo, M. A., Pacheco, J., & Morris, S. (2016). Behavioral assessment methods for RDoC constructs: A report by the National Advisory Mental Health Council Workgroup on tasks and measures for RDoC. Washington, DC: National Institutes of Mental Health.Google Scholar
  12. Barch, D. M., Pagliaccio, D., & Luking, K. (2015). Mechanisms underlying motivational deficits in psychopathology: Similarities and differences in depression and schizophrenia. Current Topics in Behavioral Neurosciences.  https://doi.org/10.1007/7854_2015_376Google Scholar
  13. Barch, D. M., Pagliaccio, D., & Luking, K. (2018). Motivational impairments in psychotic and depressive pathology: Psychological and neural mechanisms. In S. Sangha & D. Foti (Eds.), Neurobiology of abnormal emotion and motivated behaviors: Integrating animal and human research (pp. 278–304). London, England: Academic Press.CrossRefGoogle Scholar
  14. Barch, D. M., Pagliaccio, D., & Luking, K. (2019). Positive valence system dysregulation in psychosis: A comparative analysis. In J. Gruber (Ed.), Handbook of positive emotion and psychopathology (pp. 253–283). London, England: Oxford University Press.Google Scholar
  15. Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387–397.  https://doi.org/10.1037/a0036299CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, H. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Belden, A. C., Irvin, K., Hajcak, G., Kappenman, E. S., Kelly, D., Karlow, S., … Barch, D. M. (2016). Neural correlates of reward processing in depressed and healthy preschool-age children. Journal of the American Academy of Child and Adolescent Psychiatry, 55(12), 1081–1089.  https://doi.org/10.1016/j.jaac.2016.09.503CrossRefPubMedPubMedCentralGoogle Scholar
  18. Berlin, I., Givry-Steiner, L., Lecrubier, Y., & Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. European Psychiatry, 13(6), 303–309.  https://doi.org/10.1016/S0924-9338(98)80048-5CrossRefPubMedPubMedCentralGoogle Scholar
  19. Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179–209.CrossRefGoogle Scholar
  20. Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 1124–1143.  https://doi.org/10.1111/j.1460-9568.2012.07990.xCrossRefPubMedPubMedCentralGoogle Scholar
  21. Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457–480.  https://doi.org/10.1007/s00213-008-1099-6CrossRefPubMedPubMedCentralGoogle Scholar
  22. Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646–664.  https://doi.org/10.1016/j.neuron.2015.02.018CrossRefPubMedPubMedCentralGoogle Scholar
  23. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘Liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65–73.  https://doi.org/10.1016/j.coph.2008.12.014CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bora, E., Fornito, A., Yucel, M., & Pantelis, C. (2012). The effects of gender on grey matter abnormalities in major psychoses: A comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychological Medicine, 42(2), 295–307.  https://doi.org/10.1017/S0033291711001450CrossRefPubMedPubMedCentralGoogle Scholar
  25. Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 16–27.CrossRefGoogle Scholar
  26. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.  https://doi.org/10.1016/j.tics.2011.12.010CrossRefPubMedPubMedCentralGoogle Scholar
  27. Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: The gating model. Progress in Brain Research, 121, 327–349.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., … Momcai Group. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472.  https://doi.org/10.3758/s13415-014-0300-0CrossRefGoogle Scholar
  29. Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74–81.  https://doi.org/10.1111/j.1469-8986.2012.01485.xCrossRefPubMedGoogle Scholar
  30. Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156–162.  https://doi.org/10.1016/j.biopsycho.2011.10.004CrossRefPubMedGoogle Scholar
  31. Brown, E. C., Hack, S. M., Gold, J. M., Carpenter, W. T., Jr., Fischer, B. A., Prentice, K. P., & Waltz, J. A. (2015). Integrating frequency and magnitude information in decision-making in schizophrenia: An account of patient performance on the Iowa Gambling Task. Journal of Psychiatric Research, 66–67, 16–23.  https://doi.org/10.1016/j.jpsychires.2015.04.007CrossRefPubMedGoogle Scholar
  32. Burkhouse, K. L., Gorka, S. M., Afshar, K., & Phan, K. L. (2017). Neural reactivity to reward and internalizing symptom dimensions. Journal of Affective Disorders, 217, 73–79.  https://doi.org/10.1016/j.jad.2017.03.061CrossRefPubMedPubMedCentralGoogle Scholar
  33. Burkhouse, K. L., Kujawa, A., Kennedy, A. E., Shankman, S. A., Langenecker, S. A., Phan, K. L., & Klumpp, H. (2016). Neural reactivity to reward as a predictor of cognitive behavioral therapy response in anxiety and depression. Depression and Anxiety, 33(4), 281–288.  https://doi.org/10.1002/da.22482CrossRefPubMedPubMedCentralGoogle Scholar
  34. Bylsma, L. M., Morris, B. H., & Rottenberg, J. (2008). A meta-analysis of emotional reactivity in major depressive disorder. Clinical Psychology Review, 28(4), 676–691.  https://doi.org/10.1016/j.cpr.2007.10.001CrossRefPubMedGoogle Scholar
  35. Callaghan, C. K., Rouine, J., Dean, R. L., Knapp, B. I., Bidlack, J. M., Deaver, D. R., & O’Mara, S. M. (2018). Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-alpha-induced depression model. Brain, Behavior, and Immunity, 67, 152–162.  https://doi.org/10.1016/j.bbi.2017.08.016CrossRefPubMedGoogle Scholar
  36. Camardese, G., Di Giuda, D., Di Nicola, M., Cocciolillo, F., Giordano, A., Janiri, L., & Guglielmo, R. (2014). Imaging studies on dopamine transporter and depression: A review of literature and suggestions for future research. Journal of Psychiatric Research, 51, 7–18.  https://doi.org/10.1016/j.jpsychires.2013.12.006CrossRefPubMedGoogle Scholar
  37. Cannon, D. M., Klaver, J. M., Peck, S. A., Rallis-Voak, D., Erickson, K., & Drevets, W. C. (2009). Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology, 34(5), 1277–1287.  https://doi.org/10.1038/npp.2008.194CrossRefPubMedGoogle Scholar
  38. Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57(4), 1608–1616.  https://doi.org/10.1016/j.neuroimage.2011.05.037CrossRefPubMedGoogle Scholar
  39. Chase, H. W., Loriemi, P., Wensing, T., Eickhoff, S. B., & Nickl-Jockschat, T. (2018). Meta-analytic evidence for altered mesolimbic responses to reward in schizophrenia. Human Brain Mapping.  https://doi.org/10.1002/hbm.24049PubMedCrossRefGoogle Scholar
  40. Chase, H. W., Nusslock, R., Almeida, J. R., Forbes, E. E., LaBarbara, E. J., & Phillips, M. L. (2013). Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disorders, 15(8), 839–854.  https://doi.org/10.1111/bdi.12132CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chentsova-Dutton, Y., & Hanley, K. (2010). The effects of anhedonia and depression on hedonic responses. Psychiatry Research, 179(2), 176–180.  https://doi.org/10.1016/j.psychres.2009.06.013CrossRefPubMedGoogle Scholar
  42. Chong, T. T., Bonnelle, V., Manohar, S., Veromann, K. R., Muhammed, K., Tofaris, G. K., … Husain, M. (2015). Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex, 69, 40–46.  https://doi.org/10.1016/j.cortex.2015.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  43. Chung, Y. S., & Barch, D. M. (2016). Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia. Journal of Abnormal Psychology, 125(3), 453–469.  https://doi.org/10.1037/abn0000137CrossRefPubMedPubMedCentralGoogle Scholar
  44. Clepce, M., Gossler, A., Reich, K., Kornhuber, J., & Thuerauf, N. (2010). The relation between depression, anhedonia and olfactory hedonic estimates—A pilot study in major depression. Neuroscience Letters, 471(3), 139–143.  https://doi.org/10.1016/j.neulet.2010.01.027CrossRefPubMedGoogle Scholar
  45. Collins, A., & Frank, M. J. (2018). Within and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proceeding of the National Academy of Sciences, 115, 201720963.CrossRefGoogle Scholar
  46. Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working memory contributions to reinforcement learning impairments in schizophrenia. The Journal of Neuroscience, 34(41), 13747–13756.  https://doi.org/10.1523/JNEUROSCI.0989-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  47. Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. The European Journal of Neuroscience, 35(7), 1024–1035.  https://doi.org/10.1111/j.1460-9568.2011.07980.xCrossRefPubMedPubMedCentralGoogle Scholar
  48. Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017). Interactions among working memory, reinforcement learning, and effort in value-based choice: A new paradigm and selective deficits in schizophrenia. Biological Psychiatry, 82(6), 431–439.  https://doi.org/10.1016/j.biopsych.2017.05.017CrossRefPubMedPubMedCentralGoogle Scholar
  49. Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load strengthens reward prediction errors. The Journal of Neuroscience, 37(16), 4332–4342.  https://doi.org/10.1523/JNEUROSCI.2700-16.2017CrossRefPubMedPubMedCentralGoogle Scholar
  50. Conen, K. E., & Padoa-Schioppa, C. (2016). The dynamic nature of value-based decisions. Nature Neuroscience, 19(7), 866–867.  https://doi.org/10.1038/nn.4329CrossRefPubMedPubMedCentralGoogle Scholar
  51. Connolly, K. R., & Thase, M. E. (2012). Emerging drugs for major depressive disorder. Expert Opinion on Emerging Drugs, 17(1), 105–126.  https://doi.org/10.1517/14728214.2012.660146CrossRefPubMedPubMedCentralGoogle Scholar
  52. Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22(11), 4563–4567.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Cools, R., Lewis, S. J., Clark, L., Barker, R. A., & Robbins, T. W. (2007). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology, 32(1), 180–189.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Ponto, L. L. B., & Hichwa, R. D. (2001). Neural mechanisms of anhedonia in schizophrenia. Journal of the American Medical Association, 286(4), 427–435.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Croxson, P. L., Walton, M. E., Boorman, E. D., Rushworth, M. F., & Bannerman, D. M. (2014). Unilateral medial frontal cortex lesions cause a cognitive decision-making deficit in rats. The European Journal of Neuroscience, 40(12), 3757–3765.  https://doi.org/10.1111/ejn.12751CrossRefPubMedPubMedCentralGoogle Scholar
  56. Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E., & Rushworth, M. F. (2009). Effort-based cost-benefit valuation and the human brain. The Journal of Neuroscience, 29(14), 4531–4541.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Culbreth, A., Westbrook, A., & Barch, D. (2016). Negative symptoms are associated with an increased subjective cost of cognitive effort. Journal of Abnormal Psychology, 125(4), 528–536.  https://doi.org/10.1037/abn0000153CrossRefPubMedPubMedCentralGoogle Scholar
  58. Culbreth, A. J., Gold, J. M., Cools, R., & Barch, D. M. (2016). Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophrenia Bulletin, 42(2), 484–493.  https://doi.org/10.1093/schbul/sbv075CrossRefPubMedPubMedCentralGoogle Scholar
  59. Culbreth, A. J., Westbrook, A., Daw, N. D., Botvinick, M., & Barch, D. M. (2016). Reduced model-based decision-making in schizophrenia. Journal of Abnormal Psychology, 125(6), 777–787.  https://doi.org/10.1037/abn0000164CrossRefPubMedPubMedCentralGoogle Scholar
  60. Culbreth, A. J., Westbrook, A., Xu, Z., Barch, D. M., & Waltz, J. A. (2016). Intact ventral striatal prediction error signaling in medicated schizophrenia patients. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 474–483.  https://doi.org/10.1016/j.bpsc.2016.07.007CrossRefGoogle Scholar
  61. Deisenhammer, E. A., Schmid, S. K., Kemmler, G., Moser, B., & Delazer, M. (2018). Decision making under risk and under ambiguity in depressed suicide attempters, depressed non-attempters and healthy controls. Journal of Affective Disorders, 226, 261–266.  https://doi.org/10.1016/j.jad.2017.10.012CrossRefPubMedPubMedCentralGoogle Scholar
  62. Dichter, G. S., Kozink, R. V., McClernon, F. J., & Smoski, M. J. (2012). Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. Journal of Affective Disorders, 136(3), 1126–1134.  https://doi.org/10.1016/j.jad.2011.09.048CrossRefPubMedPubMedCentralGoogle Scholar
  63. Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., & Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and Anxiety, 27(9), 859–863.  https://doi.org/10.1002/da.20690CrossRefPubMedPubMedCentralGoogle Scholar
  64. Docx, L., de la Asuncion, J., Sabbe, B., Hoste, L., Baeten, R., Warnaerts, N., & Morrens, M. (2015). Effort discounting and its association with negative symptoms in schizophrenia. Cognitive Neuropsychiatry, 20(2), 172–185.  https://doi.org/10.1080/13546805.2014.993463CrossRefPubMedPubMedCentralGoogle Scholar
  65. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dowd, E. C., & Barch, D. M. (2012). Pavlovian reward prediction and receipt in schizophrenia: Relationship to anhedonia. PLoS One, 7(5), e35622.  https://doi.org/10.1371/journal.pone.0035622CrossRefPubMedPubMedCentralGoogle Scholar
  67. Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M. (2016). Probabilistic reinforcement learning in patients with schizophrenia: Relationships to anhedonia and avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 460–473.  https://doi.org/10.1016/j.bpsc.2016.05.005CrossRefGoogle Scholar
  68. Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Fervaha, G., Agid, O., Foussias, G., & Remington, G. (2013). Impairments in both reward and punishment guided reinforcement learning in schizophrenia. Schizophrenia Research, 150(2–3), 592–593.  https://doi.org/10.1016/j.schres.2013.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fervaha, G., Graff-Guerrero, A., Zakzanis, K. K., Foussias, G., Agid, O., & Remington, G. (2013). Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. Journal of Psychiatric Research, 47(11), 1590–1596.  https://doi.org/10.1016/j.jpsychires.2013.08.003CrossRefPubMedPubMedCentralGoogle Scholar
  71. Fletcher, K., Parker, G., Paterson, A., Fava, M., Iosifescu, D., & Pizzagalli, D. A. (2015). Anhedonia in melancholic and non-melancholic depressive disorders. Journal of Affective Disorders, 184, 81–88.  https://doi.org/10.1016/j.jad.2015.05.028CrossRefPubMedPubMedCentralGoogle Scholar
  72. Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 50–58.  https://doi.org/10.1016/j.neuroimage.2014.06.058CrossRefPubMedPubMedCentralGoogle Scholar
  73. Foti, D., & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 1–8.  https://doi.org/10.1016/j.biopsycho.2008.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  74. Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2011). Abnormal neural sensitivity to monetary gains versus losses among adolescents at risk for depression. Journal of Abnormal Child Psychology, 39(7), 913–924.  https://doi.org/10.1007/s10802-011-9503-9CrossRefPubMedPubMedCentralGoogle Scholar
  75. Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940–1943.CrossRefGoogle Scholar
  76. Fusar-Poli, P., & Meyer-Lindenberg, A. (2013). Striatal presynaptic dopamine in schizophrenia, part II: Meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophrenia Bulletin, 39(1), 33–42.  https://doi.org/10.1093/schbul/sbr180CrossRefPubMedPubMedCentralGoogle Scholar
  77. Gilleen, J., Shergill, S. S., & Kapur, S. (2014). Impaired subjective well-being in schizophrenia is associated with reduced anterior cingulate activity during reward processing. Psychological Medicine, 1–12.  https://doi.org/10.1017/S0033291714001718PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gold, J. M., Barch, D. M., Carter, C. S., Dakin, S., Luck, S. J., MacDonald, A. W., 3rd, … Strauss, M. (2012). Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 38(1), 144–152.  https://doi.org/10.1093/schbul/sbr142CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2014). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective, & Behavioral Neuroscience.  https://doi.org/10.3758/s13415-014-0308-5CrossRefGoogle Scholar
  80. Gold, J. M., Strauss, G. P., Waltz, J. A., Robinson, B. M., Brown, J. K., & Frank, M. J. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry.  https://doi.org/10.1016/j.biopsych.2012.12.022PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gold, J. M., Waltz, J. A., Matveeva, T. M., Kasanova, Z., Strauss, G. P., Herbener, E. S., … Frank, M. J. (2012). Negative symptoms and the failure to represent the expected reward value of actions: Behavioral and computational modeling evidence. Archives of General Psychiatry, 69(2), 129–138.  https://doi.org/10.1001/archgenpsychiatry.2011.1269CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gorka, S. M., Burkhouse, K. L., Afshar, K., & Phan, K. L. (2017). Error-related brain activity and internalizing disorder symptom dimensions in depression and anxiety. Depression and Anxiety, 34(11), 985–995.  https://doi.org/10.1002/da.22648CrossRefPubMedPubMedCentralGoogle Scholar
  83. Gorka, S. M., Huggins, A. A., Fitzgerald, D. A., Nelson, B. D., Phan, K. L., & Shankman, S. A. (2014). Neural response to reward anticipation in those with depression with and without panic disorder. Journal of Affective Disorders, 164, 50–56.  https://doi.org/10.1016/j.jad.2014.04.019CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gotlib, I. H., Sivers, H., Gabrieli, J. D., Whitfield-Gabrieli, S., Goldin, P., Minor, K. L., & Canli, T. (2005). Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. Neuroreport, 16(16), 1731–1734.Google Scholar
  85. Green, M. F., Satz, P., Ganzell, S., & Vaclav, J. F. (1992). Wisconsin Card Sorting Test performance in schizophrenia: Remediation of a stubborn deficit. The American Journal of Psychiatry, 149(1), 62–67.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Greenberg, T., Chase, H. W., Almeida, J. R., Stiffler, R., Zevallos, C. R., Aslam, H. A., … Phillips, M. L. (2015). Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: Findings from the EMBARC study. The American Journal of Psychiatry, 172(9), 881–891.  https://doi.org/10.1176/appi.ajp.2015.14050594CrossRefPubMedPubMedCentralGoogle Scholar
  87. Grimm, O., Vollstadt-Klein, S., Krebs, L., Zink, M., & Smolka, M. N. (2012). Reduced striatal activation during reward anticipation due to appetite-provoking cues in chronic schizophrenia: A fMRI study. Schizophrenia Research, 134(2–3), 151–157.  https://doi.org/10.1016/j.schres.2011.11.027CrossRefPubMedPubMedCentralGoogle Scholar
  88. Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83(5), 1019–1039.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hall, G. B., Milne, A. M., & Macqueen, G. M. (2014). An fMRI study of reward circuitry in patients with minimal or extensive history of major depression. European Archives of Psychiatry and Clinical Neuroscience, 264(3), 187–198.  https://doi.org/10.1007/s00406-013-0437-9CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hardin, M. G., Schroth, E., Pine, D. S., & Ernst, M. (2007). Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences. Journal of Child Psychology and Psychiatry, 48(5), 446–454.PubMedCrossRefGoogle Scholar
  91. Hartmann, M. N., Hager, O. M., Reimann, A. V., Chumbley, J. R., Kirschner, M., Seifritz, E., … Kaiser, S. (2014). Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort. Schizophrenia Bulletin.  https://doi.org/10.1093/schbul/sbu102PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hartmann-Riemer, M. N., Aschenbrenner, S., Bossert, M., Westermann, C., Seifritz, E., Tobler, P. N., … Kaiser, S. (2017). Deficits in reinforcement learning but no link to apathy in patients with schizophrenia. Scientific Reports, 7, 40352.  https://doi.org/10.1038/srep40352CrossRefPubMedPubMedCentralGoogle Scholar
  93. Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of Royal Society B: Biological Sciences, 362(1485), 1601–1613.CrossRefGoogle Scholar
  94. Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biological Psychiatry, 64(1), 62–69.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Heerey, E. A., & Gold, J. M. (2007). Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. Journal of Abnormal Psychology, 116(2), 268–278.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hegedus, K. M., Szkaliczki, A., Gal, B. I., Ando, B., Janka, Z., & Almos, P. Z. (2018). Decision-making performance of depressed patients within 72 h following a suicide attempt. Journal of Affective Disorders, 235, 583–588.  https://doi.org/10.1016/j.jad.2018.04.082CrossRefPubMedPubMedCentralGoogle Scholar
  97. Henderson, D., Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., … MacDonald, A. W., 3rd. (2012). Optimization of a goal maintenance task for use in clinical applications. Schizophrenia Bulletin, 38(1), 104–113.  https://doi.org/10.1093/schbul/sbr172CrossRefPubMedPubMedCentralGoogle Scholar
  98. Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward fails to alter response bias in depression. Journal of Abnormal Psychology, 103, 460–466.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Hernaus, D., Gold, J. M., Waltz, J. A., & Frank, M. J. (2018). Impaired expected value computations coupled with overreliance on stimulus-response learning in schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.  https://doi.org/10.1016/j.bpsc.2018.03.014Google Scholar
  100. Hershenberg, R., Satterthwaite, T. D., Daldal, A., Katchmar, N., Moore, T. M., Kable, J. W., & Wolf, D. H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. Journal of Affective Disorders, 196, 97–100.  https://doi.org/10.1016/j.jad.2016.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  101. Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., & Gluck, M. A. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105.  https://doi.org/10.1097/WNN.0b013e3181df3048CrossRefPubMedGoogle Scholar
  102. Herzallah, M. M., Moustafa, A. A., Natsheh, J. Y., Danoun, O. A., Simon, J. R., Tayem, Y. I., … Gluck, M. A. (2013). Depression impairs learning, whereas the selective serotonin reuptake inhibitor, paroxetine, impairs generalization in patients with major depressive disorder. Journal of Affective Disorders, 151(2), 484–492.  https://doi.org/10.1016/j.jad.2013.06.030CrossRefPubMedPubMedCentralGoogle Scholar
  103. Hillman, K. L., & Bilkey, D. K. (2012). Neural encoding of competitive effort in the anterior cingulate cortex. Nature Neuroscience, 15(9), 1290–1297.  https://doi.org/10.1038/nn.3187CrossRefPubMedPubMedCentralGoogle Scholar
  104. Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model. Psychological Review, 122(1), 54–83.  https://doi.org/10.1037/a0038339CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hosking, J. G., Cocker, P. J., & Winstanley, C. A. (2015). Prefrontal cortical inactivations decrease willingness to expend cognitive effort on a rodent cost/benefit decision-making task. Cerebral Cortex.  https://doi.org/10.1093/cercor/bhu321PubMedCrossRefPubMedCentralGoogle Scholar
  106. Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., & Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Archives of General Psychiatry, 69(8), 776–786.  https://doi.org/10.1001/archgenpsychiatry.2012.169CrossRefPubMedPubMedCentralGoogle Scholar
  107. Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophrenia Bulletin, 35(3), 549–562.  https://doi.org/10.1093/schbul/sbp006CrossRefPubMedPubMedCentralGoogle Scholar
  108. Huang, J., Yang, X. H., Lan, Y., Zhu, C. Y., Liu, X. Q., Wang, Y. F., … Chan, R. C. (2016). Neural substrates of the impaired effort expenditure decision making in schizophrenia. Neuropsychology, 30(6), 685–696.  https://doi.org/10.1037/neu0000284CrossRefPubMedGoogle Scholar
  109. Insel, C., Reinen, J., Weber, J., Wager, T. D., Jarskog, L. F., Shohamy, D., & Smith, E. E. (2014). Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 189–201.  https://doi.org/10.3758/s13415-014-0261-3CrossRefGoogle Scholar
  110. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751.  https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
  111. Jazbec, S., McClure, E., Hardin, M., Pine, D. S., & Ernst, M. (2005). Cognitive control under contingencies in anxious and depressed adolescents: An antisaccade task. Biological Psychiatry, 58(8), 632–639.  https://doi.org/10.1016/j.biopsych.2005.04.010CrossRefPubMedPubMedCentralGoogle Scholar
  112. Jazbec, S., Pantelis, C., Robbins, T., Weickert, T., Weinberger, D. R., & Goldberg, T. E. (2007). Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: Impact of distractors. Schizophrenia Research, 89(1–3), 339–349.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27(33), 8877–8884.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Juckel, G., Friedel, E., Koslowski, M., Witthaus, H., Ozgurdal, S., Gudlowski, Y., … Schlagenhauf, F. (2012). Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology, 66(1), 50–56.  https://doi.org/10.1159/000337130CrossRefPubMedPubMedCentralGoogle Scholar
  115. Juckel, G., Schlagenhauf, F., Koslowski, M., Filonov, D., Wustenberg, T., Villringer, A., … Heinz, A. (2006). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology, 187(2), 222–228.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Kamath, V., Lasutschinkow, P., Ishizuka, K., & Sawa, A. (2018). Olfactory functioning in first-episode psychosis. Schizophrenia Bulletin, 44(3), 672–680.  https://doi.org/10.1093/schbul/sbx107CrossRefPubMedPubMedCentralGoogle Scholar
  117. Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58(11), 843–853.  https://doi.org/10.1016/j.biopsych.2005.05.019CrossRefPubMedPubMedCentralGoogle Scholar
  118. Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry.  https://doi.org/10.1176/appi.ajp.2018.17101124PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kerestes, R., Segreti, A. M., Pan, L. A., Phillips, M. L., Birmaher, B., Brent, D. A., & Ladouceur, C. D. (2016). Altered neural function to happy faces in adolescents with and at risk for depression. Journal of Affective Disorders, 192, 143–152.  https://doi.org/10.1016/j.jad.2015.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  120. Keri, S., Nagy, O., Kelemen, O., Myers, C. E., & Gluck, M. A. (2005). Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia. Schizophrenia Research, 77(2–3), 321–328.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Kim, M. S., Kang, B. N., & Lim, J. Y. (2016). Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model. Neuropsychiatric Disease and Treatment, 12, 1019–1027.  https://doi.org/10.2147/NDT.S103821CrossRefPubMedPubMedCentralGoogle Scholar
  122. Kim, Y. T., Lee, K. U., & Lee, S. J. (2009). Deficit in decision-making in chronic, stable schizophrenia: From a reward and punishment perspective. Psychiatry Investigation, 6(1), 26–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kluge, A., Kirschner, M., Hager, O. M., Bischof, M., Habermeyer, B., Seifritz, E., … Kaiser, S. (2018). Combining actigraphy, ecological momentary assessment and neuroimaging to study apathy in patients with schizophrenia. Schizophrenia Research, 195, 176–182.  https://doi.org/10.1016/j.schres.2017.09.034CrossRefPubMedPubMedCentralGoogle Scholar
  124. Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686–692.  https://doi.org/10.1016/j.biopsych.2007.07.023CrossRefPubMedPubMedCentralGoogle Scholar
  125. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683–3687.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Kring, A. M., & Barch, D. M. (2014). The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral outputs. European Neuropsychopharmacology, 24(5), 725–736.  https://doi.org/10.1016/j.euroneuro.2013.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  127. Kring, A. M., & Moran, E. K. (2008). Emotional response deficits in schizophrenia: Insights from affective science. Schizophrenia Bulletin, 34(5), 819–834.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kringelbach, M. L., & Berridge, K. C. (2017). The affective core of emotion: Linking pleasure, subjective well-being, and optimal metastability in the brain. Emotion Review, 9(3), 191–199.  https://doi.org/10.1177/1754073916684558CrossRefPubMedPubMedCentralGoogle Scholar
  129. Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123(2), 287–297.  https://doi.org/10.1037/a0036285CrossRefPubMedPubMedCentralGoogle Scholar
  130. Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., … Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43(7), 1581–1588.  https://doi.org/10.1038/s41386-018-0032-xCrossRefPubMedPubMedCentralGoogle Scholar
  131. Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., & Steele, J. D. (2008). Abnormal temporal difference reward-learning signals in major depression. Brain: A Journal of Neurology, 131(Pt 8), 2084–2093.  https://doi.org/10.1093/brain/awn136CrossRefGoogle Scholar
  132. Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain: the effects of anticipation and execution. The Journal of Neuroscience, 33(14), 6160–6169.  https://doi.org/10.1523/JNEUROSCI.4777-12.2013CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lalanne, L., Ayranci, G., Kieffer, B. L., & Lutz, P. E. (2014). The kappa opioid receptor: from addiction to depression, and back. Frontiers in Psychiatry, 5, 170.  https://doi.org/10.3389/fpsyt.2014.00170CrossRefPubMedPubMedCentralGoogle Scholar
  134. Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology, 36(1), 316–338.  https://doi.org/10.1038/npp.2010.156CrossRefPubMedPubMedCentralGoogle Scholar
  135. Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., … Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage: Clinical, 2, 590–599.  https://doi.org/10.1016/j.nicl.2013.04.010CrossRefGoogle Scholar
  136. Liu, W. H., Roiser, J. P., Wang, L. Z., Zhu, Y. H., Huang, J., Neumann, D. L., … Chan, R. C. K. (2016). Anhedonia is associated with blunted reward sensitivity in first-degree relatives of patients with major depression. Journal of Affective Disorders, 190, 640–648.  https://doi.org/10.1016/j.jad.2015.10.050CrossRefPubMedPubMedCentralGoogle Scholar
  137. Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53, 213–220.  https://doi.org/10.1016/j.neuropsychologia.2013.11.023CrossRefPubMedPubMedCentralGoogle Scholar
  138. Liverant, G. I., Sloan, D. M., Pizzagalli, D. A., Harte, C. B., Kamholz, B. W., Rosebrock, L. E., … Kaplan, G. B. (2014). Associations among smoking, anhedonia, and reward learning in depression. Behavior Therapy, 45(5), 651–663.  https://doi.org/10.1016/j.beth.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  139. Llerena, K., Wynn, J. K., Hajcak, G., Green, M. F., & Horan, W. P. (2016). Patterns and reliability of EEG during error monitoring for internal versus external feedback in schizophrenia. International Journal of Psychophysiology, 105, 39–46.  https://doi.org/10.1016/j.ijpsycho.2016.04.012CrossRefPubMedPubMedCentralGoogle Scholar
  140. Luking, K. R., Neiman, J. S., Luby, J. L., & Barch, D. M. (2017). Reduced hedonic capacity/approach motivation relates to blunted responsivity to gain and loss feedback in children. Journal of Clinical Child and Adolescent Psychology, 46(3), 450–462.  https://doi.org/10.1080/15374416.2015.1012721CrossRefPubMedPubMedCentralGoogle Scholar
  141. Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016a). Depression risk predicts blunted neural responses to gains and enhanced responses to losses in healthy children. Journal of the American Academy of Child and Adolescent Psychiatry, 55(4), 328–337.  https://doi.org/10.1016/j.jaac.2016.01.007CrossRefPubMedPubMedCentralGoogle Scholar
  142. Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016b). Reward processing and risk for depression across development. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2016.04.002PubMedPubMedCentralCrossRefGoogle Scholar
  143. MacDonald, A.W., III, Patzelt, E., Kurth-Nelson, Z., Barch, D. M., Carter, C. S., Gold, J. M., … Strauss, M. E. (in submission). Shared reversal learning impairments in schizophrenia and bipolar disorder reflect a failure to exploit rewards in computational model.Google Scholar
  144. Maddox, W. T., Gorlick, M. A., Worthy, D. A., & Beevers, C. G. (2012). Depressive symptoms enhance loss-minimization, but attenuate gain-maximization in history-dependent decision-making. Cognition, 125(1), 118–124.  https://doi.org/10.1016/j.cognition.2012.06.011CrossRefPubMedPubMedCentralGoogle Scholar
  145. Maia, T. V. (2009). Reinforcement learning, conditioning, and the brain: Successes and challenges. Cognitive, Affective, & Behavioral Neuroscience, 9(4), 343–364.  https://doi.org/10.3758/CABN.9.4.343CrossRefGoogle Scholar
  146. Mann, C. L., Footer, O., Chung, Y. S., Driscoll, L. L., & Barch, D. M. (2013). Spared and impaired aspects of motivated cognitive control in schizophrenia. Journal of Abnormal Psychology, 122(3), 745–755.  https://doi.org/10.1037/a0033069CrossRefPubMedPubMedCentralGoogle Scholar
  147. Martinelli, C., Rigoli, F., Dolan, R. J., & Shergill, S. S. (2018). Decreased value-sensitivity in schizophrenia. Psychiatry Research, 259, 295–301.  https://doi.org/10.1016/j.psychres.2017.10.031CrossRefPubMedPubMedCentralGoogle Scholar
  148. Massar, S. A., Libedinsky, C., Weiyan, C., Huettel, S. A., & Chee, M. W. (2015). Separate and overlapping brain areas encode subjective value during delay and effort discounting. NeuroImage, 120, 104–113.  https://doi.org/10.1016/j.neuroimage.2015.06.080CrossRefPubMedPubMedCentralGoogle Scholar
  149. McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205(4), 667–677.  https://doi.org/10.1007/s00213-009-1573-9CrossRefPubMedPubMedCentralGoogle Scholar
  150. McCabe, C., Woffindale, C., Harmer, C. J., & Cowen, P. J. (2012). Neural processing of reward and punishment in young people at increased familial risk of depression. Biological Psychiatry, 72(7), 588–594.  https://doi.org/10.1016/j.biopsych.2012.04.034CrossRefPubMedPubMedCentralGoogle Scholar
  151. McCarthy, J. M., Treadway, M. T., Bennett, M. E., & Blanchard, J. J. (2016). Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 170(2–3), 278–284.  https://doi.org/10.1016/j.schres.2015.12.017CrossRefPubMedPubMedCentralGoogle Scholar
  152. McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3), 1–8.  https://doi.org/10.1016/j.jad.2009.04.022CrossRefPubMedPubMedCentralGoogle Scholar
  153. Medic, N., Ziauddeen, H., Vestergaard, M. D., Henning, E., Schultz, W., Farooqi, I. S., & Fletcher, P. C. (2014). Dopamine modulates the neural representation of subjective value of food in hungry subjects. The Journal of Neuroscience, 34(50), 16856–16864.  https://doi.org/10.1523/JNEUROSCI.2051-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  154. Meyer, A., Bress, J. N., Hajcak, G., & Gibb, B. E. (2018). Maternal depression is related to reduced error-related brain activity in child and adolescent offspring. Journal of Clinical Child and Adolescent Psychology, 47(2), 324–335.  https://doi.org/10.1080/15374416.2016.1138405CrossRefPubMedPubMedCentralGoogle Scholar
  155. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 21, 167–202.CrossRefGoogle Scholar
  156. Miller, J. M., Zanderigo, F., Purushothaman, P. D., DeLorenzo, C., Rubin-Falcone, H., Ogden, R. T., … Mann, J. J. (2018). Kappa opioid receptor binding in major depression: A pilot study. Synapse.  https://doi.org/10.1002/syn.22042PubMedCrossRefPubMedCentralGoogle Scholar
  157. Minami, S., Satoyoshi, H., Ide, S., Inoue, T., Yoshioka, M., & Minami, M. (2017). Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment. Neuroscience Letters, 650, 72–76.  https://doi.org/10.1016/j.neulet.2017.04.028CrossRefPubMedPubMedCentralGoogle Scholar
  158. Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822.  https://doi.org/10.1001/archgenpsychiatry.2009.91CrossRefPubMedPubMedCentralGoogle Scholar
  159. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Moran, E. K., Culbreth, A. J., & Barch, D. M. (2017). Ecological momentary assessment of negative symptoms in schizophrenia: Relationships to effort-based decision making and reinforcement learning. Journal of Abnormal Psychology, 126(1), 96–105.  https://doi.org/10.1037/abn0000240CrossRefPubMedPubMedCentralGoogle Scholar
  161. Moran, E. K., Culbreth, A. J., Kandala, S., & Barch, D. M. (in submission). Reward anticipation in schizophrenia: neural and psychological factors.Google Scholar
  162. Morgan, J. K., Olino, T. M., McMakin, D. L., Ryan, N. D., & Forbes, E. E. (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52, 66–74.  https://doi.org/10.1016/j.nbd.2012.03.039CrossRefPubMedPubMedCentralGoogle Scholar
  163. Morkl, S., Blesl, C., Jahanshahi, M., Painold, A., & Holl, A. K. (2016). Impaired probabilistic classification learning with feedback in patients with major depression. Neurobiology of Learning and Memory, 127, 48–55.  https://doi.org/10.1016/j.nlm.2015.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  164. Morris, R. W., Cyrzon, C., Green, M. J., Le Pelley, M. E., & Balleine, B. W. (2018). Impairments in action-outcome learning in schizophrenia. Translational Psychiatry, 8(1), 54.  https://doi.org/10.1038/s41398-018-0103-0CrossRefPubMedPubMedCentralGoogle Scholar
  165. Morris, S. E., Holroyd, C. B., Mann-Wrobel, M. C., & Gold, J. M. (2011). Dissociation of response and feedback negativity in schizophrenia: Electrophysiological and computational evidence for a deficit in the representation of value. Frontiers in Human Neuroscience, 5, 123.  https://doi.org/10.3389/fnhum.2011.00123CrossRefPubMedPubMedCentralGoogle Scholar
  166. Mote, J., Minzenberg, M. J., Carter, C. S., & Kring, A. M. (2014). Deficits in anticipatory but not consummatory pleasure in people with recent-onset schizophrenia spectrum disorders. Schizophrenia Research, 159(1), 76–79.  https://doi.org/10.1016/j.schres.2014.07.048CrossRefPubMedPubMedCentralGoogle Scholar
  167. Mucci, A., Dima, D., Soricelli, A., Volpe, U., Bucci, P., Frangou, S., … Maj, M. (2015). Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychological Medicine, 45(8), 1765–1778.  https://doi.org/10.1017/S0033291714002943CrossRefPubMedPubMedCentralGoogle Scholar
  168. Murphy, N. P. (2015). Dynamic measurement of extracellular opioid activity: Status quo, challenges, and significance in rewarded behaviors. ACS Chemical Neuroscience, 6(1), 94–107.  https://doi.org/10.1021/cn500295qCrossRefPubMedPubMedCentralGoogle Scholar
  169. Must, A., Horvath, S., Nemeth, V. L., & Janka, Z. (2013). The Iowa Gambling Task in depression - What have we learned about sub-optimal decision-making strategies? Frontiers in Psychology, 4, 732.  https://doi.org/10.3389/fpsyg.2013.00732CrossRefPubMedPubMedCentralGoogle Scholar
  170. Nelson, B. D., Kessel, E. M., Klein, D. N., & Shankman, S. A. (2018). Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology, 55(1).  https://doi.org/10.1111/psyp.12892CrossRefGoogle Scholar
  171. Nelson, B. D., McGowan, S. K., Sarapas, C., Robison-Andrew, E. J., Altman, S. E., Campbell, M. L., … Shankman, S. A. (2013). Biomarkers of threat and reward sensitivity demonstrate unique associations with risk for psychopathology. Journal of Abnormal Psychology, 122(3), 662–671.  https://doi.org/10.1037/a0033982CrossRefPubMedPubMedCentralGoogle Scholar
  172. Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. The American Journal of Psychiatry.  https://doi.org/10.1176/appi.ajp.2016.15121524PubMedCrossRefPubMedCentralGoogle Scholar
  173. Nelson, B. D., Shankman, S. A., & Proudfit, G. H. (2014). Intolerance of uncertainty mediates reduced reward anticipation in major depressive disorder. Journal of Affective Disorders, 158, 108–113.  https://doi.org/10.1016/j.jad.2014.02.014CrossRefPubMedPubMedCentralGoogle Scholar
  174. Nestor, P. G., Choate, V., Niznikiewicz, M., Levitt, J. J., Shenton, M. E., & McCarley, R. W. (2014). Neuropsychology of reward learning and negative symptoms in schizophrenia. Schizophrenia Research, 159(2–3), 506–508.  https://doi.org/10.1016/j.schres.2014.08.028CrossRefPubMedPubMedCentralGoogle Scholar
  175. Nielsen, M. O., Rostrup, E., Broberg, B. V., Wulff, S., & Glenthoj, B. (2018). Negative symptoms and reward disturbances in schizophrenia before and after antipsychotic monotherapy. Clinical EEG and Neuroscience, 49(1), 36–45.  https://doi.org/10.1177/1550059417744120CrossRefPubMedGoogle Scholar
  176. Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Broberg, B. V., Lublin, H., … Glenthoj, B. (2012). Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Archives of General Psychiatry, 1–10.  https://doi.org/10.1001/archgenpsychiatry.2012.847PubMedCrossRefGoogle Scholar
  177. Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthoj, B. (2012). Alterations of the brain reward system in antipsychotic naive schizophrenia patients. Biological Psychiatry, 71(10), 898–905.  https://doi.org/10.1016/j.biopsych.2012.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  178. O’Doherty, J. P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards and choices. Annals of the New York Academy of Sciences, 1121, 254–272.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Olino, T. M., Silk, J. S., Osterritter, C., & Forbes, E. E. (2015). Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. Journal of Child and Adolescent Psychopharmacology, 25(9), 711–721.  https://doi.org/10.1089/cap.2014.0165CrossRefPubMedPubMedCentralGoogle Scholar
  180. Otto, A. R., Skatova, A., Madlon-Kay, S., & Daw, N. D. (2015). Cognitive control predicts use of model-based reinforcement learning. Journal of Cognitive Neuroscience, 27(2), 319–333.  https://doi.org/10.1162/jocn_a_00709CrossRefPubMedPubMedCentralGoogle Scholar
  181. Padoa-Schioppa, C., & Cai, X. (2011). The orbitofrontal cortex and the computation of subjective value: Consolidated concepts and new perspectives. Annals of the New York Academy of Sciences, 1239, 130–137.  https://doi.org/10.1111/j.1749-6632.2011.06262.xCrossRefPubMedPubMedCentralGoogle Scholar
  182. Padoa-Schioppa, C., & Conen, K. E. (2017). Orbitofrontal cortex: A neural circuit for economic decisions. Neuron, 96(4), 736–754.  https://doi.org/10.1016/j.neuron.2017.09.031CrossRefPubMedPubMedCentralGoogle Scholar
  183. Paradiso, S., Andreasen, N. C., Crespo-Facorro, B., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (2003). Emotions in unmedicated patients with schizophrenia during evaluation with positron emission tomography. The American Journal of Psychiatry, 160(10), 1775–1783.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Park, I. H., Lee, B. C., Kim, J. J., Kim, J. I., & Koo, M. S. (2017). Effort-based reinforcement processing and functional connectivity underlying amotivation in medicated patients with depression and schizophrenia. The Journal of Neuroscience, 37(16), 4370–4380. https://doi.org/10.1523/JNEUROSCI.2524-16.2017PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pechtel, P., Dutra, S. J., Goetz, E. L., & Pizzagalli, D. A. (2013). Blunted reward responsiveness in remitted depression. Journal of Psychiatric Research, 47(12), 1864–1869.  https://doi.org/10.1016/j.jpsychires.2013.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  186. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43(1), 76–87.  https://doi.org/10.1016/j.jpsychires.2008.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  187. Plailly, J., d’Amato, T., Saoud, M., & Royet, J. P. (2006). Left temporo-limbic and orbital dysfunction in schizophrenia during odor familiarity and hedonicity judgments. NeuroImage, 29(1), 302–313.PubMedCrossRefGoogle Scholar
  188. Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L., & Dreher, J. C. (2010). Separate valuation subsystems for delay and effort decision costs. The Journal of Neuroscience, 30(42), 14080–14090.  https://doi.org/10.1523/JNEUROSCI.2752-10.2010CrossRefPubMedPubMedCentralGoogle Scholar
  189. Radua, J., Schmidt, A., Borgwardt, S., Heinz, A., Schlagenhauf, F., McGuire, P., & Fusar-Poli, P. (2015). Ventral striatal activation during reward processing in psychosis: A neurofunctional meta-analysis. JAMA Psychiatry, 72(12), 1243–1251.  https://doi.org/10.1001/jamapsychiatry.2015.2196CrossRefPubMedGoogle Scholar
  190. Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. The American Journal of Psychiatry, 166(8), 863–874.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Rassovsky, Y., Green, M. F., Nuechterlein, K. H., Breitmeyer, B., & Mintz, J. (2005). Modulation of attention during visual masking in schizophrenia. The American Journal of Psychiatry, 162(8), 1533–1535.PubMedCrossRefGoogle Scholar
  192. Reddy, L. F., Horan, W. P., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., … Green, M. F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 1-psychometric characteristics of 5 paradigms. Schizophrenia Bulletin, 41(5), 1045–1054.  https://doi.org/10.1093/schbul/sbv089CrossRefPubMedPubMedCentralGoogle Scholar
  193. Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P. (2016). Probabilistic reversal learning in schizophrenia: Stability of deficits and potential causal mechanisms. Schizophrenia Bulletin, 42(4), 942–951.  https://doi.org/10.1093/schbul/sbv226CrossRefPubMedPubMedCentralGoogle Scholar
  194. Redlich, R., Dohm, K., Grotegerd, D., Opel, N., Zwitserlood, P., Heindel, W., … Dannlowski, U. (2015). Reward processing in unipolar and bipolar depression: A functional MRI study. Neuropsychopharmacology, 40(11), 2623–2631.  https://doi.org/10.1038/npp.2015.110CrossRefPubMedPubMedCentralGoogle Scholar
  195. Reinen, J., Smith, E. E., Insel, C., Kribs, R., Shohamy, D., Wager, T. D., & Jarskog, L. F. (2014). Patients with schizophrenia are impaired when learning in the context of pursuing rewards. Schizophrenia Research, 152(1), 309–310.  https://doi.org/10.1016/j.schres.2013.11.012CrossRefPubMedGoogle Scholar
  196. Reinen, J. M., Van Snellenberg, J. X., Horga, G., Abi-Dargham, A., Daw, N. D., & Shohamy, D. (2016). Motivational context modulates prediction error response in schizophrenia. Schizophrenia Bulletin.  https://doi.org/10.1093/schbul/sbw045PubMedPubMedCentralCrossRefGoogle Scholar
  197. Robinson, O. J., Cools, R., Carlisi, C. O., Sahakian, B. J., & Drevets, W. C. (2012). Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. The American Journal of Psychiatry, 169(2), 152–159.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10), 2029–2040.  https://doi.org/10.1017/S0033291713002535CrossRefPubMedPubMedCentralGoogle Scholar
  199. Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. The European Journal of Neuroscience, 1(1), 53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Rothkirch, M., Tonn, J., Kohler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147–1157.  https://doi.org/10.1093/brain/awx025CrossRefPubMedPubMedCentralGoogle Scholar
  201. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9(9), 1161–1168.PubMedCrossRefGoogle Scholar
  202. Rushworth, M. F., Behrens, T. E., Rudebeck, P. H., & Walton, M. E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168–176.PubMedCrossRefGoogle Scholar
  203. Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L., … Dolan, R. J. (2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74(8), 790–797.  https://doi.org/10.1001/jamapsychiatry.2017.1713CrossRefPubMedPubMedCentralGoogle Scholar
  204. Rzepa, E., Fisk, J., & McCabe, C. (2017). Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. Journal of Psychopharmacology, 31(3), 303–311.  https://doi.org/10.1177/0269881116681416CrossRefPubMedGoogle Scholar
  205. Salamone, J. D., Correa, M., Farrar, A., & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191(3), 461–482.PubMedCrossRefGoogle Scholar
  206. Salamone, J. D., Correa, M., Nunes, E. J., Randall, P. A., & Pardo, M. (2012). The behavioral pharmacology of effort-related choice behavior: Dopamine, adenosine and beyond. Journal of the Experimental Analysis of Behavior, 97(1), 125–146.  https://doi.org/10.1901/jeab.2012.97-125CrossRefPubMedPubMedCentralGoogle Scholar
  207. Salamone, J. D., Correa, M., Yohn, S., Lopez Cruz, L., San Miguel, N., & Alatorre, L. (2016). The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behavioural Processes, 127, 3–17.  https://doi.org/10.1016/j.beproc.2016.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  208. Satterthwaite, T. D., Kable, J. W., Vandekar, L., Katchmar, N., Bassett, D. S., Baldassano, C. F., … Wolf, D. H. (2015). Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology, 40(9), 2258–2268.  https://doi.org/10.1038/npp.2015.75CrossRefPubMedPubMedCentralGoogle Scholar
  209. Savitz, J. B., & Drevets, W. C. (2013). Neuroreceptor imaging in depression. Neurobiology of Disease, 52, 49–65.  https://doi.org/10.1016/j.nbd.2012.06.001CrossRefPubMedGoogle Scholar
  210. Schlagenhauf, F., Huys, Q. J., Deserno, L., Rapp, M. A., Beck, A., Heinze, H. J., … Heinz, A. (2014). Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage, 89, 171–180.  https://doi.org/10.1016/j.neuroimage.2013.11.034CrossRefPubMedPubMedCentralGoogle Scholar
  211. Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., … Heinz, A. (2009). Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions. Biological Psychiatry, 65(12), 1032–1039.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Schneider, F., Habel, U., Reske, M., Toni, I., Falkai, P., & Shah, N. J. (2007). Neural substrates of olfactory processing in schizophrenia patients and their healthy relatives. Psychiatry Research, 155(2), 103–112.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Schultz, W. (2016a). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23–32.PubMedPubMedCentralGoogle Scholar
  215. Schultz, W. (2016b). Reward functions of the basal ganglia. Journal of Neural Transmission (Vienna), 123(7), 679–693.  https://doi.org/10.1007/s00702-016-1510-0CrossRefGoogle Scholar
  216. Scinska, A., Sienkiewicz-Jarosz, H., Kuran, W., Ryglewicz, D., Rogowski, A., Wrobel, E., … Bienkowski, P. (2004). Depressive symptoms and taste reactivity in humans. Physiology & Behavior, 82(5), 899–904.  https://doi.org/10.1016/j.physbeh.2004.07.012CrossRefGoogle Scholar
  217. Serper, M., Payne, E., Dill, C., Portillo, C., & Taliercio, J. (2017). Allocating effort and anticipating pleasure in schizophrenia: Relationship with real world functioning. European Psychiatry, 46, 57–64.  https://doi.org/10.1016/j.eurpsy.2017.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  218. Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: A biobehavioral study. Journal of Abnormal Psychology, 116(1), 95–104.  https://doi.org/10.1037/0021-843X.116.1.95CrossRefPubMedPubMedCentralGoogle Scholar
  219. Shankman, S. A., Nelson, B. D., Sarapas, C., Robison-Andrew, E. J., Campbell, M. L., Altman, S. E., … Gorka, S. M. (2013). A psychophysiological investigation of threat and reward sensitivity in individuals with panic disorder and/or major depressive disorder. Journal of Abnormal Psychology, 122(2), 322–338.  https://doi.org/10.1037/a0030747CrossRefPubMedPubMedCentralGoogle Scholar
  220. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106, 1942–1947.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.  https://doi.org/10.1016/j.neuron.2013.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  222. Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291.  https://doi.org/10.1038/nn.4384CrossRefPubMedGoogle Scholar
  223. Sherdell, L., Waugh, C. E., & Gotlib, I. H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. Journal of Abnormal Psychology, 121(1), 51–60.  https://doi.org/10.1037/a0024945CrossRefPubMedGoogle Scholar
  224. Siegert, R. J., Weatherall, M., & Bell, E. M. (2008). Is implicit sequence learning impaired in schizophrenia? A meta-analysis. Brain and Cognition, 67(3), 351–359.  https://doi.org/10.1016/j.bandc.2008.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  225. Smith, K. S., & Berridge, K. C. (2007). Opioid limbic circuit for reward: Interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. The Journal of Neuroscience, 27(7), 1594–1605.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Smoski, M. J., Rittenberg, A., & Dichter, G. S. (2011). Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatry Research, 194(3), 263–270.  https://doi.org/10.1016/j.pscychresns.2011.06.012PubMedCrossRefPubMedCentralGoogle Scholar
  227. Somlai, Z., Moustafa, A. A., Keri, S., Myers, C. E., & Gluck, M. A. (2011). General functioning predicts reward and punishment learning in schizophrenia. Schizophrenia Research, 127(1–3), 131–136.  https://doi.org/10.1016/j.schres.2010.07.028CrossRefPubMedPubMedCentralGoogle Scholar
  228. Stepien, M., Manoliu, A., Kubli, R., Schneider, K., Tobler, P. N., Seifritz, E., … Kirschner, M. (2018). Investigating the association of ventral and dorsal striatal dysfunction during reward anticipation with negative symptoms in patients with schizophrenia and healthy individuals. PLoS One, 13(6), e0198215.  https://doi.org/10.1371/journal.pone.0198215CrossRefPubMedPubMedCentralGoogle Scholar
  229. Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hagele, C., Suchotzki, K., … Strohle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677–688.  https://doi.org/10.1177/0269881111416686CrossRefPubMedGoogle Scholar
  230. Strauss, G. P., Visser, K. F., Keller, W. R., Gold, J. M., & Buchanan, R. W. (2018). Anhedonia reflects impairment in making relative value judgments between positive and neutral stimuli in schizophrenia. Schizophrenia Research.  https://doi.org/10.1016/j.schres.2018.02.016PubMedCrossRefGoogle Scholar
  231. Strauss, G. P., Whearty, K. M., Morra, L. F., Sullivan, S. K., Ossenfort, K. L., & Frost, K. H. (2016). Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a Progressive Ratio task. Schizophrenia Research, 170(1), 198–204.  https://doi.org/10.1016/j.schres.2015.12.006CrossRefPubMedGoogle Scholar
  232. Stringaris, A., Vidal-Ribas Belil, P., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., … Consortium, Imagen. (2015). The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. The American Journal of Psychiatry, 172(12), 1215–1223.  https://doi.org/10.1176/appi.ajp.2015.14101298CrossRefPubMedPubMedCentralGoogle Scholar
  233. Subramaniam, K., Hooker, C. I., Biagianti, B., Fisher, M., Nagarajan, S., & Vinogradov, S. (2015). Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function. NeuroImage: Clinical, 9, 153–163.  https://doi.org/10.1016/j.nicl.2015.08.001CrossRefGoogle Scholar
  234. Suzuki, S., Cross, L., & O’Doherty, J. P. (2017). Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nature Neuroscience, 20(12), 1780–1786.  https://doi.org/10.1038/s41593-017-0008-xCrossRefPubMedPubMedCentralGoogle Scholar
  235. Takamura, M., Okamoto, Y., Okada, G., Toki, S., Yamamoto, T., Ichikawa, N., … Yamawaki, S. (2017). Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuropsychopharmacology and Biological Psychiatry, 79(Pt B), 317–323.  https://doi.org/10.1016/j.pnpbp.2017.07.006CrossRefGoogle Scholar
  236. Taylor, N., Hollis, J. P., Corcoran, S., Gross, R., Cuthbert, B., Swails, L. W., & Duncan, E. (2018). Impaired reward responsiveness in schizophrenia. Schizophrenia Research.  https://doi.org/10.1016/j.schres.2018.02.057PubMedCrossRefPubMedCentralGoogle Scholar
  237. Taylor, S. F., Phan, K. L., Britton, J. C., & Liberzon, I. (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology, 30(5), 984–995.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Tobia, M. J., Guo, R., Schwarze, U., Boehmer, W., Glascher, J., Finckh, B., … Sommer, T. (2014). Neural systems for choice and valuation with counterfactual learning signals. NeuroImage, 89, 57–69.  https://doi.org/10.1016/j.neuroimage.2013.11.051CrossRefPubMedPubMedCentralGoogle Scholar
  239. Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553–558.  https://doi.org/10.1037/a0028813CrossRefPubMedPubMedCentralGoogle Scholar
  240. Treadway, M. T., Buckholtz, J. W., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., … Zald, D. H. (2012). Dopaminergic mechanisms of individual differences in human effort-based decision-making. The Journal of Neuroscience, 32(18), 6170–6176.  https://doi.org/10.1523/JNEUROSCI.6459-11.2012CrossRefPubMedPubMedCentralGoogle Scholar
  241. Treadway, M. T., Peterman, J. S., Zald, D. H., & Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 161(2–3), 382–385.  https://doi.org/10.1016/j.schres.2014.11.024CrossRefPubMedPubMedCentralGoogle Scholar
  242. Tremeau, F., Antonius, D., Nolan, K., Butler, P., & Javitt, D. C. (2014). Immediate affective motivation is not impaired in schizophrenia. Schizophrenia Research, 159(1), 157–163.  https://doi.org/10.1016/j.schres.2014.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  243. Trifilieff, P., Feng, B., Urizar, E., Winiger, V., Ward, R. D., Taylor, K. M., … Javitch, J. A. (2013). Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Molecular Psychiatry.  https://doi.org/10.1038/mp.2013.57PubMedPubMedCentralCrossRefGoogle Scholar
  244. Turnbull, O. H., Evans, C. E., Kemish, K., Park, S., & Bowman, C. H. (2006). A novel set-shifting modification of the iowa gambling task: Flexible emotion-based learning in schizophrenia. Neuropsychology, 20(3), 290–298.PubMedCrossRefPubMedCentralGoogle Scholar
  245. Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., & Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience.  https://doi.org/10.1093/scan/nsu158PubMedPubMedCentralCrossRefGoogle Scholar
  246. Urban-Kowalczyk, M., Smigielski, J., & Kotlicka-Antczak, M. (2018). Overrated hedonic judgment of odors in patients with schizophrenia. CNS Neuroscience & Therapeutics.  https://doi.org/10.1111/cns.12849CrossRefGoogle Scholar
  247. Vaidyanathan, U., Nelson, L. D., & Patrick, C. J. (2012). Clarifying domains of internalizing psychopathology using neurophysiology. Psychological Medicine, 42(3), 447–459.  https://doi.org/10.1017/S0033291711001528CrossRefPubMedPubMedCentralGoogle Scholar
  248. Vanes, L. D., Mouchlianitis, E., Collier, T., Averbeck, B. B., & Shergill, S. S. (2018). Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychological Medicine, 1–10.  https://doi.org/10.1017/S0033291718000041PubMedPubMedCentralCrossRefGoogle Scholar
  249. Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational models of anterior cingulate cortex: At the crossroads between prediction and effort. Frontiers in Neuroscience, 11, 316.  https://doi.org/10.3389/fnins.2017.00316CrossRefPubMedPubMedCentralGoogle Scholar
  250. Vrieze, E., Pizzagalli, D. A., Demyttenaere, K., Hompes, T., Sienaert, P., de Boer, P., … Claes, S. (2013). Reduced reward learning predicts outcome in major depressive disorder. Biological Psychiatry, 73(7), 639–645.  https://doi.org/10.1016/j.biopsych.2012.10.014CrossRefPubMedPubMedCentralGoogle Scholar
  251. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56.PubMedCrossRefPubMedCentralGoogle Scholar
  252. Walsh, A. E. L., Browning, M., Drevets, W. C., Furey, M., & Harmer, C. J. (2018). Dissociable temporal effects of bupropion on behavioural measures of emotional and reward processing in depression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1742).  https://doi.org/10.1098/rstb.2017.0030CrossRefGoogle Scholar
  253. Walter, H., Heckers, S., Kassubek, J., Erk, S., Frasch, K., & Abler, B. (2010). Further evidence for aberrant prefrontal salience coding in schizophrenia. Frontiers in Behavioral Neuroscience, 3, 62.  https://doi.org/10.3389/neuro.08.062.2009CrossRefPubMedPubMedCentralGoogle Scholar
  254. Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. The Journal of Neuroscience, 23(16), 6475–6479.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Waltz, J. A., Brown, J. K., Gold, J. M., Ross, T. J., Salmeron, B. J., & Stein, E. A. (2015). Probing the dynamic updating of value in schizophrenia using a sensory-specific satiety paradigm. Schizophrenia Bulletin, 41(5), 1115–1122.  https://doi.org/10.1093/schbul/sbv034CrossRefPubMedPubMedCentralGoogle Scholar
  256. Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756–764.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93(1–3), 296–303.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Waltz, J. A., & Gold, J. M. (2016). Motivational deficits in schizophrenia and the representation of expected value. Current Topics in Behavioral Neurosciences, 27, 375–410.  https://doi.org/10.1007/7854_2015_385CrossRefPubMedPubMedCentralGoogle Scholar
  259. Waltz, J. A., Kasanova, Z., Ross, T. J., Salmeron, B. J., McMahon, R. P., Gold, J. M., & Stein, E. A. (2013). The roles of reward, default, and executive control networks in set-shifting impairments in schizophrenia. PLoS One, 8(2), e57257.  https://doi.org/10.1371/journal.pone.0057257CrossRefPubMedPubMedCentralGoogle Scholar
  260. Waltz, J. A., Schweitzer, J. B., Gold, J. M., Kurup, P. K., Ross, T. J., Salmeron, B. J., … Stein, E. A. (2009). Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology, 34(6), 1567–1577.PubMedCrossRefPubMedCentralGoogle Scholar
  261. Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35(12), 2427–2439.  https://doi.org/10.1038/npp.2010.126CrossRefPubMedPubMedCentralGoogle Scholar
  262. Wang, J., Huang, J., Yang, X. H., Lui, S. S., Cheung, E. F., & Chan, R. C. (2015). Anhedonia in schizophrenia: Deficits in both motivation and hedonic capacity. Schizophrenia Research, 168(1–2), 465–474.  https://doi.org/10.1016/j.schres.2015.06.019CrossRefPubMedPubMedCentralGoogle Scholar
  263. Wang, K. S., Smith, D. V., & Delgado, M. R. (2016). Using fMRI to study reward processing in humans: Past, present, and future. Journal of Neurophysiology, 115(3), 1664–1678.  https://doi.org/10.1152/jn.00333.2015CrossRefPubMedPubMedCentralGoogle Scholar
  264. Wang, L., LaBar, K. S., Smoski, M., Rosenthal, M. Z., Dolcos, F., Lynch, T. R., … McCarthy, G. (2008). Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Research, 163(2), 143–155.  https://doi.org/10.1016/j.pscychresns.2007.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  265. Weinberg, A., Liu, H., & Shankman, S. A. (2016). Blunted neural response to errors as a trait marker of melancholic depression. Biological Psychology, 113, 100–107.  https://doi.org/10.1016/j.biopsycho.2015.11.012CrossRefPubMedPubMedCentralGoogle Scholar
  266. White, D. M., Kraguljac, N. V., Reid, M. A., & Lahti, A. C. (2015). Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: A combined magnetic resonance spectroscopy/functional imaging study. NPJ Schizophrenia, 1, 14001.  https://doi.org/10.1038/npjschz.2014.1CrossRefPubMedPubMedCentralGoogle Scholar
  267. Whitmer, A. J., Frank, M. J., & Gotlib, I. H. (2012). Sensitivity to reward and punishment in major depressive disorder: Effects of rumination and of single versus multiple experiences. Cognition and Emotion, 26(8), 1475–1485.  https://doi.org/10.1080/02699931.2012.682973CrossRefPubMedPubMedCentralGoogle Scholar
  268. Whitton, A. E., Kakani, P., Foti, D., Van’t Veer, A., Haile, A., Crowley, D. J., & Pizzagalli, D. A. (2016). Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 87–95.  https://doi.org/10.1016/j.bpsc.2015.09.007CrossRefGoogle Scholar
  269. Whitton, A. E., Van’t Veer, A., Kakani, P., Dillon, D. G., Ironside, M. L., Haile, A., … Pizzagalli, D. A. (2017). Acute stress impairs frontocingulate activation during error monitoring in remitted depression. Psychoneuroendocrinology, 75, 164–172.  https://doi.org/10.1016/j.psyneuen.2016.10.007CrossRefPubMedPubMedCentralGoogle Scholar
  270. Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 1455–1463.  https://doi.org/10.1038/mp.2016.72CrossRefPubMedPubMedCentralGoogle Scholar
  271. Wolf, D. H., Satterthwaite, T. D., Kantrowitz, J. J., Katchmar, N., Vandekar, L., Elliott, M. A., & Ruparel, K. (2014). Amotivation in schizophrenia: Integrated assessment with behavioral, clinical, and imaging measures. Schizophrenia Bulletin, 40(6), 1328–1337.  https://doi.org/10.1093/schbul/sbu026CrossRefPubMedPubMedCentralGoogle Scholar
  272. Yan, C., Su, L., Wang, Y., Xu, T., Yin, D. Z., Fan, M. X., … Chan, R. C. (2016). Multivariate neural representations of value during reward anticipation and consummation in the human orbitofrontal cortex. Scientific Reports, 6, 29079.  https://doi.org/10.1038/srep29079CrossRefPubMedPubMedCentralGoogle Scholar
  273. Yang, X. H., Huang, J., Lan, Y., Zhu, C. Y., Liu, X. Q., Wang, Y. F., … Chan, R. C. (2016). Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 52–59.  https://doi.org/10.1016/j.pnpbp.2015.07.006CrossRefGoogle Scholar
  274. Yang, X. H., Huang, J., Zhu, C. Y., Wang, Y. F., Cheung, E. F., Chan, R. C., & Xie, G. R. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research, 220(3), 874–882.  https://doi.org/10.1016/j.psychres.2014.08.056CrossRefPubMedPubMedCentralGoogle Scholar
  275. Zhang, L., Tang, J., Dong, Y., Ji, Y., Tao, R., Liang, Z., … Wang, K. (2015). Similarities and differences in decision-making impairments between autism spectrum disorder and schizophrenia. Frontiers in Behavioral Neuroscience, 9, 259.  https://doi.org/10.3389/fnbeh.2015.00259CrossRefPubMedPubMedCentralGoogle Scholar
  276. Zhang, R., Picchioni, M., Allen, P., & Toulopoulou, T. (2016). Working memory in unaffected relatives of patients with schizophrenia: A meta-analysis of functional magnetic resonance imaging studies. Schizophrenia Bulletin, 42(4), 1068–1077.  https://doi.org/10.1093/schbul/sbv221CrossRefPubMedPubMedCentralGoogle Scholar
  277. Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L., & Wang, J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2), 531–539.  https://doi.org/10.1016/j.jad.2013.06.039CrossRefPubMedPubMedCentralGoogle Scholar
  278. Zou, L. Q., Zhou, H. Y., Lui, S. S. Y., Wang, Y., Wang, Y., Gan, J., … Chan, R. C. K. (2018). Olfactory identification deficit and its relationship with hedonic traits in patients with first-episode schizophrenia and individuals with schizotypy. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 83, 137–141.  https://doi.org/10.1016/j.pnpbp.2018.01.014CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Deanna M. Barch
    • 1
    • 2
    • 3
    Email author
  • David Pagliaccio
    • 4
  • Katherine Luking
    • 5
  • Erin K. Moran
    • 1
    • 2
  • Adam J. Culbreth
    • 1
  1. 1.Department of Psychological & Brain ScienceWashington University in St. LouisSt. LouisUSA
  2. 2.Department of PsychiatryWashington University in St. LouisSt. LouisUSA
  3. 3.Department of RadiologyWashington University in St. LouisSt. LouisUSA
  4. 4.Department of PsychiatryColumbia UniversityNew YorkUSA
  5. 5.Department of Psychologial & Brain SciencesWashington University in St. LouisSt. LouisUSA

Personalised recommendations