Advertisement

Dorylus: An Ant Colony Based Tool for Automated Test Case Generation

  • Dan BruceEmail author
  • Héctor D. Menéndez
  • David Clark
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11664)

Abstract

Automated test generation to cover all branches within a program is a hard task. We present Dorylus, a test suite generation tool that uses ant colony optimisation, guided by coverage. Dorylus constructs a continuous domain over which it conducts independent, multiple objective search that employs a lightweight, dynamic, path-based input dependency analysis. We compare Dorylus with EvoSuite with respect to both coverage and speed using two corpora. The first benchmark contains string based programs, where our results demonstrate that Dorylus improves over EvoSuite on branch coverage and is 50% faster on average. The second benchmark consists of 936 Java programs from SF110 and suggests Dorylus generalises well as it achieves 79% coverage on average whereas the best performing of three EvoSuite algorithms reaches 89%.

Keywords

Search-based testing Automated test case generation Ant colony optimisation Dorylus 

References

  1. 1.
    Alshraideh, M., Bottaci, L.: Search-based software test data generation for string data using program-specific search operators. Softw. Test. Verif. Reliab. 16(3), 175–203 (2006)CrossRefGoogle Scholar
  2. 2.
    Arcuri, A.: Many Independent Objective (MIO) algorithm for test suite generation. In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 3–17. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66299-2_1CrossRefGoogle Scholar
  3. 3.
    Arcuri, A.: Test suite generation with the Many Independent Objective (MIO) algorithm. Inf. Softw. Technol. 104, 195–206 (2018)CrossRefGoogle Scholar
  4. 4.
    Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of evolutionary algorithms for test suite generation. In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 33–48. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66299-2_3CrossRefGoogle Scholar
  5. 5.
    Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, pp. 416–419. ACM (2011)Google Scholar
  6. 6.
    Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2), 276–291 (2013)CrossRefGoogle Scholar
  7. 7.
    Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation using evosuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8 (2014)CrossRefGoogle Scholar
  8. 8.
    Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation with dynamic symbolic execution. In: IEEE 24th International Symposium Software Reliability Engineering (ISSRE), pp. 360–369 (2013)Google Scholar
  9. 9.
    Harman, M., Clark, J.: Metrics are fitness functions too. In: Proceedings of 10th International Symposium on Software Metrics, pp. 58–69. IEEE (2004)Google Scholar
  10. 10.
    Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879 (1990)CrossRefGoogle Scholar
  11. 11.
    McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliab. 14(2), 105–156 (2004)CrossRefGoogle Scholar
  12. 12.
    Panichella, A., Campos, J., Fraser, G.: EvoSuite at the SBST 2019 tool competition. In: International Workshop on Search-Based Software Testing (SBST), pp. 29–32 (2019)Google Scholar
  13. 13.
    Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-objective optimisation problem with dynamic selection of the targets. IEEE Trans. Softw. Eng. 44(2), 122–158 (2018)CrossRefGoogle Scholar
  14. 14.
    Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a many-objective optimization problem. In: IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)Google Scholar
  15. 15.
    Panichella, A., Kifetew, F.M., Tonella, P.: A large scale empirical comparison of state-of-the-art search-based test case generators. Inf. Softw. Technol. 104, 236–256 (2018)CrossRefGoogle Scholar
  16. 16.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University College LondonLondonUK

Personalised recommendations