Functional Anatomy of the Human Spine

  • Daniel Gray Trujillo
  • Krishnan Chakravarthy
  • Gary Jay Brenner


The objective of this chapter is to cover the anatomy and signaling pathways that contribute to our understanding of signal transduction from the peripheral to the central nervous system. This chapter provides the basis for understanding pain pharmacology and various interventions undertaken by pain practitioners.


Neuroanatomy Spine Signal transduction Pharmacology Peripheral nervous system Central nervous system 


  1. 1.
    Cervero F, Laird JM. Visceral pain. Lancet. 1999;353(9170):2145–8.PubMedGoogle Scholar
  2. 2.
    Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Res. 2004;1000(1–2):40–56.PubMedGoogle Scholar
  3. 3.
    Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci. 2003;26:1–30.PubMedGoogle Scholar
  4. 4.
    Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.PubMedGoogle Scholar
  5. 5.
    Woolf CJ, Fitzgerald M. The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol. 1983;221(3):313–28.PubMedGoogle Scholar
  6. 6.
    Saadé NE, Jabbur SJ. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol. 2008;86:22–47.PubMedGoogle Scholar
  7. 7.
    Laine FJ, Smoker WR. Anatomy of the cranial nerves. Neuroimaging Clin N Am. 1998;8(1):69–100.PubMedGoogle Scholar
  8. 8.
    White JC. Sensory innervation of the viscera. Res Publ Assoc Nerv Ment Dis. 1943;23:373–90.Google Scholar
  9. 9.
    Nolte J, Sundsten JW. The human brain: an introduction to its functional anatomy. 5th ed. St. Louis: Mosby; 2002.Google Scholar
  10. 10.
    DeGowin RL, DeGowin EL, Brown DD, et al. DeGowin & DeGowin’s diagnostic examination. 6th ed. New York: McGraw-Hill; 1994.Google Scholar
  11. 11.
    Silen W, Cope Z. Cope’s early diagnosis of the acute abdomen. 21st ed. New York: Oxford University Press; 2005.Google Scholar
  12. 12.
    Lee MW, McPhee RW, Stringer MD. An evidence-based approach to human dermatomes. Clin Anat. 2008;21(5):363–73.PubMedGoogle Scholar
  13. 13.
    Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet. 2008;9(5):370–82.PubMedGoogle Scholar
  14. 14.
    Tannahill D, Britto JM, Vermeren MM, Ohta K, Cook GM, Keynes RJ. Orienting axon growth: spinal nerve segmentation and surround-repulsion. Int J Dev Biol. 2000;44(1):119–27.PubMedGoogle Scholar
  15. 15.
    Netter FH. Atlas of human anatomy. 4th ed. Philadelphia: Saunders/Elsevier; 2006.Google Scholar
  16. 16.
    Swap CJ, Nagurney JT. Value and limitations of chest pain history in the evaluation of patients with suspected acute coronary syndromes. JAMA. 2005;294(20):2623–9.PubMedGoogle Scholar
  17. 17.
    Cervero F, Laird JM, Pozo MA. Selective changes of receptive field properties of spinal nociceptive neurones induced by noxious visceral stimulation in the cat. Pain. 1992;51(3):335–42.PubMedGoogle Scholar
  18. 18.
    Cervero F, Tattersall JE. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J Physiol. 1987;388:383–95.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Foreman RD. Integration of viscerosomatic sensory input at the spinal level. Prog Brain Res. 2000;122:209–21.PubMedGoogle Scholar
  20. 20.
    Saper CB. Pain as a visceral sensation. Prog Brain Res. 2000;122:237–43.PubMedGoogle Scholar
  21. 21.
    Pappagallo M. The neurological basis of pain. New York: McGraw-Hill; 2005.Google Scholar
  22. 22.
    Westlund KN. Visceral nociception. Curr Rev Pain. 2000;4(6):478–87.PubMedGoogle Scholar
  23. 23.
    Bueno L. Neuroimmune alterations of ENS functioning. Gut. 2000;47(suppl 4):iv63–5, discussion iv76.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cervero F. Dorsal horn neurons and their sensory inputs. In: Yaksh TL, editor. Spinal afferent processing. New York: Plenum Press; 1986.Google Scholar
  25. 25.
    Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 1997;14(1):2–31.PubMedGoogle Scholar
  26. 26.
    Jänig W. Neuronal mechanisms of pain with special emphasis on visceral and deep somatic pain. Acta Neurochir Suppl (Wien). 1987;38:16–32.Google Scholar
  27. 27.
    Brown AG, Fyffe RE. Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J Physiol. 1981;321:31–47.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Rustioni A. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors. Arch Ital Biol. 2005;143(2):103–12.PubMedGoogle Scholar
  29. 29.
    Liu H, Brown JL, Jasmin L, Maggio JE, Vigna SR, Mantyh PW, et al. Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci U S A. 1994;91(3):1009–13.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Staud R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. Curr Rheumatol Rep. 2002;4(4):299–305.PubMedGoogle Scholar
  31. 31.
    Baranauskas G, Nistri A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog Neurobiol. 1998;54(3):349–65.PubMedGoogle Scholar
  32. 32.
    DeLeo JA, Winkelstein BA. Physiology of chronic spinal pain syndromes: from animal models to biomechanics. Spine. 2002;27(22):2526–37.PubMedGoogle Scholar
  33. 33.
    Gracely RH, Grant MA, Giesecke T. Evoked pain measures in fibromyalgia. Best Pract Res Clin Rheumatol. 2003;17(4):593–609.PubMedGoogle Scholar
  34. 34.
    Bennett GJ. Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manag. 2000;19(1 suppl):S2–6.Google Scholar
  35. 35.
    Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993;52(2):127–36.PubMedGoogle Scholar
  36. 36.
    Luo ZD, Cizkova D. The role of nitric oxide in nociception. Curr Rev Pain. 2000;4(6):459–66.PubMedGoogle Scholar
  37. 37.
    Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain. 1977;3(1):57–68.PubMedGoogle Scholar
  38. 38.
    Tasker R. Central pain states. In: Loeser JD, editor. Bonica’s management of pain. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 433–57.Google Scholar
  39. 39.
    Canavero S, Bonicalzi V, Massa-Micon B. Central neurogenic pruritus: a literature review. Acta Neurol Belg. 1997;97(4):244–7.PubMedGoogle Scholar
  40. 40.
    Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain. 1995;61(2):187–93.PubMedGoogle Scholar
  41. 41.
    Finnerup NB, Johannesen IL, Sindrup SH, Bach FW, Jensen TS. Pain and dysesthesia in patients with spinal cord injury: a postal survey. Spinal Cord. 2001;39(5):256–62.PubMedGoogle Scholar
  42. 42.
    Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. Cambridge, New York: Cambridge University Press; 2007.Google Scholar
  43. 43.
    Waxman SG, Hains BC. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 2006;29(4):207–15.PubMedGoogle Scholar
  44. 44.
    National Spinal Cord Injury Statistical Center. 2017 updated report.
  45. 45.
    Finnerup NB, Jensen TS. Spinal cord injury pain—mechanisms and treatment. Eur J Neurol. 2004;11(2):73–82.PubMedGoogle Scholar
  46. 46.
    Siddall PJ, Loeser JD. Pain following spinal cord injury. Spinal Cord. 2001;39(2):63–73.PubMedGoogle Scholar
  47. 47.
    Todor DR, Mu HT, Milhorat TH. Pain and syringomyelia: a review. Neurosurg Focus. 2000;8(3):E11.PubMedGoogle Scholar
  48. 48.
    Ragnarsson KT. Management of pain in persons with spinal cord injury. J Spinal Cord Med. 1997;20(2):186–99.PubMedGoogle Scholar
  49. 49.
    Loeser JD, Ward AA Jr, White LE Jr. Chronic deafferentation of human spinal cord neurons. J Neurosurg. 1968;29(1):48–50.PubMedGoogle Scholar
  50. 50.
    Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE. Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience. 2003;116(4):1097–110.PubMedGoogle Scholar
  51. 51.
    Davies SN, Lodge D. Evidence for involvement of N-methylaspartate receptors in ‘wind-up’ of class 2 neurones in the dorsal horn of the rat. Brain Res. 1987;424(2):402–6.PubMedGoogle Scholar
  52. 52.
    Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci U S A. 1999;96(14):7680–6.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mills CD, Johnson KM, Hulsebosch CE. Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. J Neurotrauma. 2002;19(1):23–42.PubMedGoogle Scholar
  54. 54.
    Hains BC, Willis WD, Hulsebosch CE. Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Exp Brain Res. 2003;149(2):174–86.PubMedGoogle Scholar
  55. 55.
    Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain. 2004;109(3):379–88.PubMedGoogle Scholar
  56. 56.
    Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain. 2005;128(Pt 10):2359–71.PubMedGoogle Scholar
  57. 57.
    Morrow TJ, Paulson PE, Brewer KL, Yezierski RP, Casey KL. Chronic, selective forebrain responses to excitotoxic dorsal horn injury. Exp Neurol. 2000;161(1):220–6.PubMedGoogle Scholar
  58. 58.
    Pattany PM, Yezierski RP, Widerström-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol. 2002;23(6):901–5.PubMedGoogle Scholar
  59. 59.
    Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Töpfner S, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci. 1997;17(14):5503–8.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Langley JN. The autonomic nervous system. Brain. 1903;26:1–26.Google Scholar
  61. 61.
    Shefchyk SJ. Spinal cord neural organization controlling the urinary bladder and striated sphincter. Prog Brain Res. 2002;137:71–82.PubMedGoogle Scholar
  62. 62.
    Mitchell GAG. Anatomy of the autonomic nervous system. Edinburgh: Livingstone; 1953.Google Scholar
  63. 63.
    Pick J. The autonomic nervous system; morphological, comparative, clinical, and surgical aspects. Philadelphia: Lippincott; 1970.Google Scholar
  64. 64.
    Jänig W. Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol. 1996;42(1–2):29–51.PubMedGoogle Scholar
  65. 65.
    Brodal P. The central nervous system: structure and function. 3rd ed. New York: Oxford University Press; 2004.Google Scholar
  66. 66.
    Aunis D, Langley K. Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. Acta Physiol Scand. 1999;167(2):89–97.PubMedGoogle Scholar
  67. 67.
    Cho HM, Lee DY, Sung SW. Anatomical variations of rami communicantes in the upper thoracic sympathetic trunk. Eur J Cardiothorac Surg. 2005;27(2):320–4.PubMedGoogle Scholar
  68. 68.
    Murata Y, Takahashi K, Yamagata M, Takahashi Y, Shimada Y, Moriya H. Variations in the number and position of human lumbar sympathetic ganglia and rami communicantes. Clin Anat. 2003;16(2):108–13.PubMedGoogle Scholar
  69. 69.
    Ramsaroop L, Partab P, Singh B, Satyapal KS. Thoracic origin of a sympathetic supply to the upper limb: the ‘nerve of Kuntz’ revisited. J Anat. 2001;199(Pt 6):675–82.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science. 1991;251(5001):1608–10.PubMedGoogle Scholar
  71. 71.
    Jänig W, Levine JD, Michaelis M. Interactions of sympathetic and primary afferent neurons following nerve injury and tissue trauma. Prog Brain Res. 1996;113:161–84.PubMedGoogle Scholar
  72. 72.
    Janig W. The sympathetic nervous system in pain. Eur J Anaesthesiol Suppl. 1995;10:53–60.PubMedGoogle Scholar
  73. 73.
    Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991 Mar;44(3):293–9.PubMedGoogle Scholar
  74. 74.
    Fishman SM, Ballantyne JC. In: Rathmell JP, editor. Bonica’s management of pain. 4th ed. Baltimore: Lippincott, Williams & Wilkins; 2010.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daniel Gray Trujillo
    • 1
  • Krishnan Chakravarthy
    • 2
  • Gary Jay Brenner
    • 3
  1. 1.Department of AnesthesiologyUniversity of California, San DiegoSan DiegoUSA
  2. 2.Department of Anesthesiology and Pain MedicineUCSD Health Science and VA San Diego HealthcareLa JollaUSA
  3. 3.Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations