Basic Research for Pain

  • Yong Luo
  • Shiqian ShenEmail author


More than 100 million Americans suffer from chronic pain, with an estimated annual cost of $635 billion. Rapid progress in basic research has started to uncover the neural underpinnings of pain. We focus on basic research that has advanced or likely will advance pain management, including spine pain. Four areas will be discussed: (1) stem cell therapy; (2) monoclonal antibody-based pharmacotherapy for chronic pain; (3) new imaging modality for the detection of pain signal and its response to treatment; and (4) gut microbiome modulation of neuropathic and inflammatory pain.


Chronic pain Stem cell therapy Monoclonal antibodies CGRP (calcitonin gene-related peptide) NGF (nerve growth factor) Functional MRI Ferumoxytol Gut microbiome 


  1. 1.
    Nicholas M, Vlaeyen JWS, Rief W, Barke A, Aziz Q, Benoliel R, et al. The IASP classification of chronic pain for ICD-11: chronic primary pain. Pain. 2019;160(1):28–37.PubMedGoogle Scholar
  2. 2.
    Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019;160(1):19–27.PubMedGoogle Scholar
  3. 3.
    Groenewald CB, Essner BS, Wright D, Fesinmeyer MD, Palermo TM. The economic costs of chronic pain among a cohort of treatment-seeking adolescents in the United States. J Pain. 2014;15(9):925–33.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13(8):715–24.Google Scholar
  5. 5.
    Cheng J. State of the art, challenges, and opportunities for pain medicine. Pain Med. 2018;19:1109.Google Scholar
  6. 6.
    Noriega DC, Ardura F, Hernández-Ramajo R, Martín-Ferrero MÁ, Sánchez-Lite I, Toribio B, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial. Transplantation. 2017;101(8):1945–51.PubMedGoogle Scholar
  7. 7.
    Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92(7):822–8.PubMedGoogle Scholar
  8. 8.
    Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2015;33(1):146–56.PubMedGoogle Scholar
  9. 9.
    Keytruda UK’s first early-access drug. Nat Biotechnol. 2015;33(5):437.Google Scholar
  10. 10.
    Trial watch: ipilimumab success in melanoma provides boost for cancer immunotherapy. Nat Rev Drug Discov. 2010;9(8):584.Google Scholar
  11. 11.
    Goadsby PJ, Reuter U, Hallström Y, Broessner G, Bonner JH, Zhang F, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32.PubMedGoogle Scholar
  12. 12.
    Tepper S, Ashina M, Reuter U, Brandes JL, Doležil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34.PubMedGoogle Scholar
  13. 13.
    Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377(22):2113–22.PubMedGoogle Scholar
  14. 14.
    Skljarevski V, Matharu M, Millen BA, Ossipov MH, Kim BK, Yang JY. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 phase 3 randomized controlled clinical trial. Cephalalgia. 2018;38(8):1442–54.PubMedGoogle Scholar
  15. 15.
    Scheinfeld N. Adalimumab (HUMIRA): a review. J Drugs Dermatol. 2003;2(4):375–7.PubMedGoogle Scholar
  16. 16.
    Furue K, Ito T, Furue M. Differential efficacy of biologic treatments targeting the TNF-alpha/IL-23/IL-17 axis in psoriasis and psoriatic arthritis. Cytokine. 2018;111:182–8.PubMedGoogle Scholar
  17. 17.
    Wang EA, Suzuki E, Maverakis E, Adamopoulos IE. Targeting IL-17 in psoriatic arthritis. Eur J Rheumatol. 2017;4(4):272–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Alunno A, Carubbi F, Cafaro G, Pucci G, Battista F, Bartoloni E, et al. Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis. Expert Opin Biol Ther. 2015;15(12):1727–37.PubMedGoogle Scholar
  19. 19.
    Naidoo J, Cappelli LC, Forde PM, Marrone KA, Lipson EJ, Hammers HJ, et al. Inflammatory arthritis: a newly recognized adverse event of immune checkpoint blockade. Oncologist. 2017;22(6):627–30.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 2004;14(7):395–9.PubMedGoogle Scholar
  21. 21.
    Watson JJ, Allen SJ, Dawbarn D. Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs. 2008;22(6):349–59.PubMedGoogle Scholar
  22. 22.
    Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–25.PubMedGoogle Scholar
  23. 23.
    Nencini S, Ringuet M, Kim DH, Chen YJ, Greenhill C, Ivanusic JJ. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain. 2017;13:1744806917697011.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363(16):1521–31.PubMedGoogle Scholar
  25. 25.
    Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J Pain. 2012;13(8):790–8.PubMedGoogle Scholar
  26. 26.
    Katz N, Borenstein DG, Birbara C, Bramson C, Nemeth MA, Smith MD, et al. Efficacy and safety of tanezumab in the treatment of chronic low back pain. Pain. 2011;152(10):2248–58.PubMedGoogle Scholar
  27. 27.
    Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976). 2009;34(9):934–40.Google Scholar
  28. 28.
    Babinska A, Wawrzynek W, Czech E, Skupiński J, Szczygieł J, Łabuz-Roszak B. No association between MRI changes in the lumbar spine and intensity of pain, quality of life, depressive and anxiety symptoms in patients with low back pain. Neurol Neurochir Pol. 2019;53(1):74–82.PubMedGoogle Scholar
  29. 29.
    Michelini G, Corridore A, Torlone S, Bruno F, Marsecano C, Capasso R, et al. Dynamic MRI in the evaluation of the spine: state of the art. Acta Biomed. 2018;89(1-S):89–101.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mahato NK, Montuelle S, Clark B. Assessment of in vivo lumbar inter-vertebral motion: reliability of a novel dynamic weight-bearing magnetic resonance imaging technique using a side-bending task. Asian Spine J. 2019;13:377. [Epub ahead of print].PubMedPubMedCentralGoogle Scholar
  31. 31.
    Martucci KT, Borg N, MacNiven KH, Knutson B, Mackey SC. Altered prefrontal correlates of monetary anticipation and outcome in chronic pain. Pain. 2018;159(8):1494–507.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Meier ML, Vrana A, Humphreys BK, Seifritz E, Stämpfli P, Schweinhardt P. Pain-related fear-dissociable neural sources of different fear constructs. eNeuro. 2019;5(6): pii: ENEURO.0107–18.2018.PubMedGoogle Scholar
  33. 33.
    Ellingsen DM, Napadow V, Protsenko E, Mawla I, Kowalski MH, Swensen D, et al. Brain mechanisms of anticipated painful movements and their modulation by manual therapy in chronic low back pain. J Pain. 2018;19(11):1352–65.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Vachon-Presseau E, Roy M, Woo CW, Kunz M, Martel MO, Sullivan MJ, et al. Multiple faces of pain: effects of chronic pain on the brain regulation of facial expression. Pain. 2016;157(8):1819–30.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sommer C, Leinders M, Uceyler N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018;159(3):595–602.PubMedGoogle Scholar
  36. 36.
    Marrone MC, Morabito A, Giustizieri M, Chiurchiù V, Leuti A, Mattioli M, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun. 2017;8:15292.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yamasaki R, Fujii T, Wang B, Masaki K, Kido MA, Yoshida M, et al. Allergic inflammation leads to neuropathic pain via glial cell activation. J Neurosci. 2016;36(47):11929–45.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schomberg D, Ahmed M, Miranpuri G, Olson J, Resnick DK. Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci. 2012;19(3):125–32.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Liou JT, Liu FC, Mao CC, Lai YS, Day YJ. Inflammation confers dual effects on nociceptive processing in chronic neuropathic pain model. Anesthesiology. 2011;114(3):660–72.PubMedGoogle Scholar
  40. 40.
    Shen S, Lim G, You Z, Ding W, Huang P, Ran C, et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci. 2017;20(9):1213–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shen B, Behera D, James ML, Reyes ST, Andrews L, Cipriano PW, et al. Visualizing nerve injury in a neuropathic pain model with [(18)F]FTC-146 PET/MRI. Theranostics. 2017;7(11):2794–805.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138(Pt 3):604–15.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Shen S, Ding W, Ahmed S, Hu R, Opalacz A, Roth S, You Z, Wotjkiewicz GR, Lim G, Chen L, Mao J, Chen JW, Zhang Y. Ultrasmall superparamagnetic iron oxide imaging identifies tissue and nerve inflammation in pain conditions. Pain Med. 2018;19(4):686–92.PubMedGoogle Scholar
  44. 44.
    Krogsgaard LR, Engsbro AL, Bytzer P. Antibiotics: a risk factor for irritable bowel syndrome in a population-based cohort. Scand J Gastroenterol. 2018;53(9):1027–30.PubMedGoogle Scholar
  45. 45.
    Zhuang X, Tian Z, Li L, Zeng Z, Chen M, Xiong L. Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front Microbiol. 2018;9:1600.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Peter J, Fournier C, Durdevic M, Knoblich L, Keip B, Dejaco C, et al. A microbial signature of psychological distress in irritable bowel syndrome. Psychosom Med. 2018;80(8):698–709.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 2018;48(10):1044–60.PubMedGoogle Scholar
  48. 48.
    Lee SH, Joo NS, Kim KM, Kim KN. The therapeutic effect of a multistrain probiotic on diarrhea-predominant irritable bowel syndrome: a pilot study. Gastroenterol Res Pract. 2018;2018:8791916.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations