Advertisement

Minimally Invasive Surgical Procedures for Spine Pain Management

  • Hamid M. ShahEmail author
  • David A. Edwards
Chapter

Abstract

Spine surgery has been rapidly evolving to deal with more complex pathology as well as address spine disease in a more elegant manner. Minimally invasive approaches are an example of this evolution. They have undergone many iterations in the last several decades to hone improvements in efficacy and tissue-sparing techniques. For the modern minimally invasive spine (MIS) surgeon, a tubular retractor system is the workhorse for most decompressive and stabilization procedure. Through these narrow channels, decompressive procedures as straight forward as a microdiscectomy can be performed as well as single- and multiple-level laminectomies through the same skin incision. When coupled with posterior instrumentation, constructs with interbody cage delivery for circumferential fusions can be employed. These techniques have demonstrated outcomes similar to their open counterparts with less local tissue injury, less blood loss, and earlier mobilization and discharge, along with having similar costs.

Keywords

Minimally invasive Spine surgery TLIF MIS-TLIF LLIF Microdiscectomy Laminectomy Interbody fusion Percutaneous 

References

  1. 1.
    Burman MS. Myeloscopy or the direct visualization of spinal cord. J Bone Joint Surg. 1931;13:695–6.Google Scholar
  2. 2.
    Pool JL. Direct visualization of dorsal nerve roots of cauda equina by means of a myeloscope. Arch Neurol Psychiatr. 1938;39:1308–12.CrossRefGoogle Scholar
  3. 3.
    Ooi Y, Satoh Y, Morisaki N. Myeloscopy: a preliminary report. J Jpn Orthop Assoc. 1973;47:619–27.Google Scholar
  4. 4.
    Gibson JN, Waddell G. Surgical interventions for lumbar disc prolapse: updated cochrane review. Spine (Phila Pa 1976). 2007;32(16):1735–47.CrossRefGoogle Scholar
  5. 5.
    Perez-Cruet MJ, Foley KT, Isaacs RE. Micro endoscopic lumbar discectomy: technical note. Neurosurgery. 2002;51(5):S129–36.PubMedGoogle Scholar
  6. 6.
    Teli M, Lovi A, Brayda-Bruno M, Zagra A, Corriero A, Giudici F, et al. Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J. 2010;19(3):443–50.CrossRefGoogle Scholar
  7. 7.
    Clark AJ, Safaee MM, Khan NR, Brown MT, Foley KT. Tubular microdiscectomy: techniques, complication avoidance, and review of the literature. Neurosurg Focus. 2017;43(2):E7.CrossRefGoogle Scholar
  8. 8.
    Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY. A comparison of acute hospital charges after tubular versus open microdiscectomy. World Neurosurg. 2013;80:208–12.CrossRefGoogle Scholar
  9. 9.
    Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg. 1997;3:301–7.Google Scholar
  10. 10.
    Phan K, Mobbs RJ. Minimally invasive versus open laminectomy for lumbar stenosis: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2016;41(2):E91–E100.CrossRefGoogle Scholar
  11. 11.
    Mobbs JR, Li J, Sivabalan P, Raley D, Rao PJ. Outcomes after decompressive laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for bilateral decompression and open laminectomy. J Neurosurg Spine. 2014;21(2):197–86.CrossRefGoogle Scholar
  12. 12.
    Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lonne G, et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ. 2015;350:h1603.CrossRefGoogle Scholar
  13. 13.
    Alimi M, Hofstetter CP, Torres-Campa JM, Navarro-Ramirez R, Cong GT, Njoku I Jr, Härtl R. Unilateral tubular approach for bilateral laminotomy: effect on ipsilateral and contralateral buttock and leg pain. Eur Spine J. 2017;26(2):389–96.  https://doi.org/10.1007/s00586-016-4594-1.CrossRefPubMedGoogle Scholar
  14. 14.
    Overdevest G, Vleggeert-Lankamp C, Jacobs W, Thome C, Gunzburg R. Peul effectiveness of posterior decompression techniques compared with conventional laminectomy for lumbar stenosis. Eur Spine J. 2015;24:2244–63.CrossRefGoogle Scholar
  15. 15.
    Oppenheimer J, Decastro I, McDonnell D. Minimally invasive spine surgery: a historical review. Neurosurg Focus. 2009;27(3):E9.CrossRefGoogle Scholar
  16. 16.
    Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):1–8.CrossRefGoogle Scholar
  17. 17.
    Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(1 Suppl):7–12.PubMedGoogle Scholar
  18. 18.
    Scwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive Transforaminal Lumbar Interbody Fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18. Suppl:S1–6.CrossRefGoogle Scholar
  19. 19.
    Park P, Foley KT. Minimally invasive transforaminal lumbar Interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum 2 years’ follow up. Neurosurg Focus. 2008;25(2):E16.CrossRefGoogle Scholar
  20. 20.
    Mummaneni P, Bisson E, Kerezoudis P, Glassman S, Foley K, Slotkin JR, et al. Minimally invasive versus open fusion for grade I degenerative lumbar spondylolisthesis: analysis of the quality outcomes database. Neurosurg Focus. 2017;43(2):E11.CrossRefGoogle Scholar
  21. 21.
    Parker SL, Adogwa O, Bydon A, Cheng J, McGirt MJ. Cost-effectiveness of minimally invasive vs open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neursurg. 2012;78(1–2):178–84.CrossRefGoogle Scholar
  22. 22.
    Parker SL, Mendenhall SK, Shau DN, Zuckerman SL, Godil SS, Cheng JS, McGirt MJ. Minimally invasive vs open TLIF for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg. 2014;82(1–2):230–8.CrossRefGoogle Scholar
  23. 23.
    Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of MIS TLIF vs open TLIF fusion. 2 year assessment of narcotic use, return to work, disability and quality of Life. J Spinal Disord Tech. 2011;24(8):479–84.PubMedGoogle Scholar
  24. 24.
    Goldstein CL, Macwan K, Sundurarajan K, Rampersaud YR. Comparative outcome of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res. 2014;472(6):1727–37.CrossRefGoogle Scholar
  25. 25.
    Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J. Comparison of one level minimally invasive and open TLIF in degenerative and isthmic spondylolisthesis grades 1 and 2. Eur Spine J. 2010;19:1780–4.CrossRefGoogle Scholar
  26. 26.
    Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg. 2011;54(1):33–7.CrossRefGoogle Scholar
  27. 27.
    Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KM, Broadstone PA, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine. 2011;36(7):556–63.CrossRefGoogle Scholar
  28. 28.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Laterl Interbody Fusion(XLIF); a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.CrossRefGoogle Scholar
  29. 29.
    Lykissas MG, Aichmar A, Hughes AP, Sama AA, Lebl DR, Taher F, et al. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014;14:749–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of NeurosurgeryVanderbilt University Medical CenterNashvilleUSA
  2. 2.Departments of Anesthesiology and Neurological SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations