Skip to main content

Genomics and Pharmacogenomics of Severe Childhood Asthma

  • Chapter
  • First Online:
Severe Asthma in Children and Adolescents

Abstract

Twin studies have shown that asthma has a heritability of more than 50%, indicating that genetic factors play a major role in its pathogenesis and are an important key to understanding the underlying disease mechanisms. Heritability is higher for childhood compared to adult asthma, and genetics also seem to be partly responsible for determining symptom severity, suggesting that genetic studies might be particularly relevant in relation to severe childhood asthma. Furthermore, the poor response to standard treatments in severe asthma indicates that this phenotype might be associated with distinct underlying mechanisms, potentially driven by genetics, separating it from milder disease. In addition to studying the genetic code (or genome), the study of genomics includes methodological approaches such as epigenetics (of importance for gene regulation) and transcriptomics (studies of gene expression). All of these are “mechanistic tools” with the potential to increase understanding of basic disease processes and provide the basis for improved treatment. In this chapter we will focus on (1) genomic approaches contributing to our understanding of disease mechanisms and (2) genomic approaches used to predict and understand differences in treatment response between individuals, also termed pharmacogenomics. Since relatively few genomic studies have focused specifically on the phenotype of severe childhood asthma, we will also discuss the implications of results from studies on milder disease and studies of severe asthma in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702–9.

    Article  CAS  PubMed  Google Scholar 

  2. Thomsen SF, Duffy DL, Kyvik KO, Backer V. Genetic influence on the age at onset of asthma: a twin study. J Allergy Clin Immunol. 2010;126(3):626–30.

    Article  PubMed  Google Scholar 

  3. Thomsen SF, van der Sluis S, Kyvik KO, Backer V. A study of asthma severity in adult twins. Clin Respir J. 2012t;6(4):228–37.

    Article  PubMed  Google Scholar 

  4. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.

    Article  CAS  PubMed  Google Scholar 

  5. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.

    Article  CAS  PubMed  Google Scholar 

  6. Stein MM, Thompson EE, Schoettler N, Helling BA, Magnaye KM, Stanhope C, et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J Allergy Clin Immunol. 2018;142(3):749–764.e3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, et al. Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med. 2013;5(186):186ra67.

    Article  CAS  PubMed  Google Scholar 

  8. Ha SG, Ge XN, Bahaie NS, Kang BN, Rao A, Rao SP, et al. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat Commun. 2013;4:2479.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Willis-Owen SAG, Spiegel S, Lloyd CM, Moffatt MF, Cookson WOCM. The ORMDL3 asthma gene regulates ICAM1 and has multiple effects on cellular inflammation. Am J Respir Crit Care Med. 2019;199(4):478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmüller J, Ang W, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet. 2018;50(1):42.

    Article  CAS  PubMed  Google Scholar 

  12. Waage J, Standl M, Curtin JA, Jessen LE, Thorsen J, Tian C, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015;47(12):1449–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bouzigon E, Corda E, Aschard H, Dizier M-H, Boland A, Bousquet J, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med. 2008;359(19):1985–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013;45(8):907–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ferreira MAR, Matheson MC, Duffy DL, Marks GB, Hui J, Le Souëf P, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378(9795):1006–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41(5):596–601.

    Article  CAS  PubMed  Google Scholar 

  19. Bønnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kreiner E, Waage J, Standl M, Brix S, Pers TH, Couto Alves A, et al. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J Allergy Clin Immunol. 2017;140(3):771–81.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856–60.

    Article  CAS  PubMed  Google Scholar 

  22. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107–19.

    Article  PubMed  Google Scholar 

  24. Bisgaard H, Bønnelykke K, Sleiman PMA, Brasholt M, Chawes B, Kreiner-Møller E, et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med. 2009;179(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  25. Calışkan M, Bochkov YA, Kreiner-Møller E, Bønnelykke K, Stein MM, Du G, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med. 2013;368(15):1398–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Loss GJ, Depner M, Hose AJ, Genuneit J, Karvonen AM, Hyvärinen A, et al. The early development of wheeze. Environmental determinants and genetic susceptibility at 17q21. Am J Respir Crit Care Med. 2016;193(8):889–97.

    Article  PubMed  Google Scholar 

  27. Sharma S, Raby BA, Hunninghake GM, Soto-Quirós M, Avila L, Murphy AJ, et al. Variants in TGFB1, dust mite exposure, and disease severity in children with asthma. Am J Respir Crit Care Med. 2009;179(5):356–62.

    Article  CAS  PubMed  Google Scholar 

  28. Cunningham J, Basu K, Tavendale R, Palmer CNA, Smith H, Mukhopadhyay S. The CHI3L1 rs4950928 polymorphism is associated with asthma-related hospital admissions in children and young adults. Ann Allergy Asthma Immunol. 2011;106(5):381–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bukvic BK, Blekic M, Simpson A, Marinho S, Curtin JA, Hankinson J, et al. Asthma severity, polymorphisms in 20p13 and their interaction with tobacco smoke exposure. Pediatr Allergy Immunol. 2013;24(1):10–8.

    Article  PubMed  Google Scholar 

  30. Chen L-C, Tseng H-M, Wu C-J, Kuo M-L, Wu C-J, Gao P-S, et al. Evaluation of a common variant of the gene encoding clara cell 10 kd protein (CC10) as a candidate determinant for asthma severity and steroid responsiveness among Chinese children. J Asthma. 2012;49(7):665–72.

    Article  CAS  PubMed  Google Scholar 

  31. Turner SW, Khoo S-K, Laing IA, Palmer LJ, Gibson NA, Rye P, et al. beta2 adrenoceptor Arg16Gly polymorphism, airway responsiveness, lung function and asthma in infants and children. Clin Exp Allergy. 2004 Jul;34(7):1043–8.

    Article  CAS  PubMed  Google Scholar 

  32. Holloway JW, Dunbar PR, Riley GA, Sawyer GM, Fitzharris PF, Pearce N, et al. Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin Exp Allergy. 2000;30(8):1097–103.

    Article  CAS  PubMed  Google Scholar 

  33. Lima JJ, Holbrook JT, Wang J, Sylvester JE, Blake KV, Blumenthal MN, et al. The C523A beta2 adrenergic receptor polymorphism associates with markers of asthma severity in African Americans. J Asthma. 2006;43(3):185–91.

    Article  CAS  PubMed  Google Scholar 

  34. Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  35. Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol. 2009;41(2):349–69.

    Article  CAS  PubMed  Google Scholar 

  36. Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bønnelykke K, Coleman AT, Evans MD, Thorsen J, Waage J, Vissing NH, et al. Cadherin-related family member 3 genetics and rhinovirus C respiratory illnesses. Am J Respir Crit Care Med. 2018;197(5):589–94.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Cox DW, Bizzintino J, Ferrari G, Khoo SK, Zhang G, Whelan S, et al. Human rhinovirus species C infection in young children with acute wheeze is associated with increased acute respiratory hospital admissions. Am J Respir Crit Care Med. 2013;188(11):1358–64.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Bizzintino J, Lee W-M, Laing IA, Vang F, Pappas T, Zhang G, et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J. 2011;37(5):1037–42.

    Article  CAS  PubMed  Google Scholar 

  40. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48(7):709–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. McGeachie MJ, Wu AC, Tse SM, Clemmer GL, Sordillo J, Himes BE, et al. CTNNA3 and SEMA3D: promising loci for asthma exacerbation identified through multiple genome-wide association studies. J Allergy Clin Immunol. 2015;136(6):1503–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shrine N, Portelli MA, John C, Soler Artigas M, Bennett N, Hall R, et al. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respir Med. 2019;7(1):20–34.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Stokholm J, Chawes BL, Vissing N, Bønnelykke K, Bisgaard H. Cat exposure in early life decreases asthma risk from the 17q21 high-risk variant. J Allergy Clin Immunol. 2018;141(5):1598–606.

    Article  PubMed  Google Scholar 

  44. Hunninghake GM, Soto-Quirós ME, Lasky-Su J, Avila L, Ly NP, Liang C, et al. Dust mite exposure modifies the effect of functional IL10 polymorphisms on allergy and asthma exacerbations. J Allergy Clin Immunol. 2008;122(1):93–8, 98.e1–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wu AC, Lasky-Su J, Rogers CA, Klanderman BJ, Litonjua AA. Fungal exposure modulates the effect of polymorphisms of chitinases on emergency department visits and hospitalizations. Am J Respir Crit Care Med. 2010;182(7):884–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010;10(12):861–8.

    Article  CAS  Google Scholar 

  47. Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77.

    Article  PubMed  Google Scholar 

  48. Michel O, Duchateau J, Sergysels R. Effect of inhaled endotoxin on bronchial reactivity in asthmatic and normal subjects. J Appl Physiol (1985). 1989;66(3):1059–64.

    Article  CAS  Google Scholar 

  49. Kljaic-Bukvic B, Blekic M, Aberle N, Curtin JA, Hankinson J, Semic-Jusufagic A, et al. Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations. Pediatr Allergy Immunol. 2014;25(6):552–7.

    PubMed  Google Scholar 

  50. Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287–98.

    Article  CAS  PubMed  Google Scholar 

  51. Ege MJ, Strachan DP, Cookson WOCM, Moffatt MF, Gut I, Lathrop M, et al. Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J Allergy Clin Immunol. 2011;127(1):138–44, 144.e1–4.

    Article  PubMed  Google Scholar 

  52. Myers RA, Scott NM, Gauderman WJ, Qiu W, Mathias RA, Romieu I, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet. 2014;23(19):5251–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Scholtens S, Postma DS, Moffatt MF, Panasevich S, Granell R, Henderson AJ, et al. Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. J Allergy Clin Immunol. 2014;133(3):885–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Du R, Litonjua AA, Tantisira KG, Lasky-Su J, Sunyaev SR, Klanderman BJ, et al. Genome-wide association study reveals class I MHC-restricted T cell-associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations. J Allergy Clin Immunol. 2012;129(2):368–73, 373.e1–5.

    Article  CAS  PubMed  Google Scholar 

  55. Brehm JM, Schuemann B, Fuhlbrigge AL, Hollis BW, Strunk RC, Zeiger RS, et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol. 2010;126(1):52–58.e5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Takeuchi A, Saito T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function. Front Immunol. 2017;8:194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):63–9.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24(9):3135–44.

    Article  CAS  PubMed  Google Scholar 

  59. Salam MT, Byun H-M, Lurmann F, Breton CV, Wang X, Eckel SP, et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol. 2012;129(1):232–239.e1–7.

    Article  CAS  PubMed  Google Scholar 

  60. Breton CV, Byun H-M, Wang X, Salam MT, Siegmund K, Gilliland FD. DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am J Respir Crit Care Med. 2011;184(2):191–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Morales E, Bustamante M, Vilahur N, Escaramis G, Montfort M, de Cid R, et al. DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am J Respir Crit Care Med. 2012;185(9):937–43.

    Article  CAS  PubMed  Google Scholar 

  62. Fu A, Leaderer BP, Gent JF, Leaderer D, Zhu Y. An environmental epigenetic study of ADRB2 5’-UTR methylation and childhood asthma severity. Clin Exp Allergy. 2012;42(11):1575–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner P, et al. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res. 2013;741–742:18–26.

    Article  CAS  PubMed  Google Scholar 

  64. Pascual M, Suzuki M, Isidoro-Garcia M, Padrón J, Turner T, Lorente F, et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics. 2011;6(9):1131–7.

    Article  CAS  PubMed  Google Scholar 

  65. Breton CV, Byun H-M, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Xu C-J, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6(5):379–88.

    Article  CAS  PubMed  Google Scholar 

  67. Forno E, Wang T, Qi C, Yan Q, Xu CJ, Boutaoui N, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respir Med. 2019;7(4):336–46.

    Article  CAS  PubMed  Google Scholar 

  68. Forno E, Wang T, Yan Q, Brehm J, Acosta-Perez E, Colon-Semidey A, et al. A multiomics approach to identify genes associated with childhood asthma risk and morbidity. Am J Respir Cell Mol Biol. 2017;57(4):439–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med. 2008;178(9):962–8.

    Article  CAS  PubMed  Google Scholar 

  70. Wagener AH, Zwinderman AH, Luiten S, Fokkens WJ, Bel EH, Sterk PJ, et al. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression. PLoS One. 2013;8(11):e80257.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hekking P-P, Loza MJ, Pavlidis S, de Meulder B, Lefaudeux D, Baribaud F, et al. Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J Allergy Clin Immunol. 2018;141(4):1280–90.

    Article  CAS  PubMed  Google Scholar 

  72. Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, et al. Gene expression correlated with severe asthma characteristics reveals heterogeneous mechanisms of severe disease. Am J Respir Crit Care Med. 2017;195(11):1449–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Bønnelykke K, Ober C. Leveraging gene-environment interactions and endotypes for asthma gene discovery. J Allergy Clin Immunol. 2016;137(3):667–79.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Murk W, Bracken MB, DeWan AT. Confronting the missing epistasis problem: on the reproducibility of gene-gene interactions. Hum Genet. 2015;134(8):837–49.

    Article  CAS  PubMed  Google Scholar 

  75. Hilvering B, Pavord ID. What goes up must come down: biomarkers and novel biologicals in severe asthma. Clin Exp Allergy. 2015;45(7):1162–9.

    Article  CAS  PubMed  Google Scholar 

  76. Zeiger RS, Szefler SJ, Phillips BR, Schatz M, Martinez FD, Chinchilli VM, et al. Response profiles to fluticasone and montelukast in mild-to-moderate persistent childhood asthma. J Allergy Clin Immunol. 2006;117(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  77. Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br Med Bull. 2000;56(4):1054–70.

    Article  CAS  PubMed  Google Scholar 

  78. Farzan N, Vijverberg SJH, Arets HG, Raaijmakers JA, Maitland-van der Zee AH. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin Exp Allergy. 2017;47(2):271–93.

    Article  CAS  PubMed  Google Scholar 

  79. Szefler SJ, Phillips BR, Martinez FD, Chinchilli VM, Lemanske RF, Strunk RC, et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol. 2005;115(2):233–42.

    Article  CAS  PubMed  Google Scholar 

  80. Hersh CP, Soto-Quirós ME, Avila L, Lake SL, Liang C, Fournier E, et al. Genome-wide linkage analysis of pulmonary function in families of children with asthma in Costa Rica. Thorax. 2007;62(3):224–30.

    Article  PubMed  Google Scholar 

  81. McGeachie MJ, Stahl EA, Himes BE, Pendergrass SA, Lima JJ, Irvin CG, et al. Polygenic heritability estimates in pharmacogenetics: focus on asthma and related phenotypes. Pharmacogenet Genomics. 2013;23(6):324–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Pirmohamed M. Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol. 2001;52(4):345–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI. Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax. 2000;55(9):762–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Hancox RJ, Sears MR, Taylor DR. Polymorphism of the beta2-adrenoceptor and the response to long-term beta2-agonist therapy in asthma. Eur Respir J. 1998;11(3):589–93.

    CAS  PubMed  Google Scholar 

  85. Israel E, Drazen JM, Liggett SB, Boushey HA, Cherniack RM, Chinchilli VM, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000;162(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  86. Israel E, Lasky-Su J, Markezich A, Damask A, Szefler SJ, Schuemann B, et al. Genome-wide association study of short-acting β2-agonists. A novel genome-wide significant locus on chromosome 2 near ASB3. Am J Respir Crit Care Med. 2015;191(5):530–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Himes BE, Jiang X, Hu R, Wu AC, Lasky-Su JA, Klanderman BJ, et al. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet. 2012;8(7):e1002824.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Drake KA, Torgerson DG, Gignoux CR, Galanter JM, Roth LA, Huntsman S, et al. A genome-wide association study of bronchodilator response in Latinos implicates rare variants. J Allergy Clin Immunol. 2014;133(2):370–8.

    Article  PubMed  Google Scholar 

  89. Padhukasahasram B, Yang JJ, Levin AM, Yang M, Burchard EG, Kumar R, et al. Gene-based association identifies SPATA13-AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups. Pharmacogenomics J. 2014;14(4):365–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Duan QL, Lasky-Su J, Himes BE, Qiu W, Litonjua AA, Damask A, et al. A genome-wide association study of bronchodilator response in asthmatics. Pharmacogenomics J. 2014;14(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  91. Brehm JM, Man Tse S, Croteau-Chonka DC, Forno E, Litonjua AA, Raby BA, et al. A genome-wide association study of post-bronchodilator lung function in children with asthma. Am J Respir Crit Care Med. 2015;192(5):634–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Mak ACY, White MJ, Eckalbar WL, Szpiech ZA, Oh SS, Pino-Yanes M, et al. Whole-genome sequencing of pharmacogenetic drug response in racially diverse children with asthma. Am J Respir Crit Care Med. 2018;197(12):1552–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Barnes PJ. Glucocorticosteroids: current and future directions. Br J Pharmacol. 2011;163(1):29–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Vijverberg SJH, Tavendale R, Leusink M, Koenderman L, Raaijmakers JAM, Postma DS, et al. Pharmacogenetic analysis of GLCCI1 in three north European pediatric asthma populations with a reported use of inhaled corticosteroids. Pharmacogenomics. 2014;15(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  95. Hosking L, Bleecker E, Ghosh S, Yeo A, Jacques L, Mosteller M, et al. GLCCI1 rs37973 does not influence treatment response to inhaled corticosteroids in white subjects with asthma. J Allergy Clin Immunol. 2014;133(2):587–9.

    Article  CAS  PubMed  Google Scholar 

  96. Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Park T-J, Park J-S, Cheong HS, Park B-L, Kim LH, Heo JS, et al. Genome-wide association study identifies ALLC polymorphisms correlated with FEV1 change by corticosteroid. Clin Chim Acta. 2014;436:20–6.

    Article  CAS  PubMed  Google Scholar 

  98. Mougey EB, Chen C, Tantisira KG, Blake KV, Peters SP, Wise RA, et al. Pharmacogenetics of asthma controller treatment. Pharmacogenomics J. 2013;13(3):242–50.

    Article  CAS  PubMed  Google Scholar 

  99. Rogers AJ, Tantisira KG, Fuhlbrigge AL, Litonjua AA, Lasky-Su JA, Szefler SJ, et al. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics. 2009;10(8):1231–42.

    Article  CAS  PubMed  Google Scholar 

  100. Tantisira KG, Silverman ES, Mariani TJ, Xu J, Richter BG, Klanderman BJ, et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol. 2007;120(6):1285–91.

    Article  CAS  PubMed  Google Scholar 

  101. Izuhara Y, Matsumoto H, Kanemitsu Y, Izuhara K, Tohda Y, Horiguchi T, et al. GLCCI1 variant accelerates pulmonary function decline in patients with asthma receiving inhaled corticosteroids. Allergy. 2014;69(5):668–73.

    Article  CAS  PubMed  Google Scholar 

  102. Park H-W, Dahlin A, Tse S, Duan QL, Schuemann B, Martinez FD, et al. Genetic predictors associated with improvement of asthma symptoms in response to inhaled corticosteroids. J Allergy Clin Immunol. 2014;133(3):664–669.e5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Koster ES, Maitland-van der Zee A-H, Tavendale R, Mukhopadhyay S, SJH V, Raaijmakers JM, et al. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children. Allergy. 2011;66(12):1546–52.

    Article  CAS  PubMed  Google Scholar 

  104. Tantisira KG, Damask A, Szefler SJ, Schuemann B, Markezich A, Su J, et al. Genome-wide association identifies the T gene as a novel asthma pharmacogenetic locus. Am J Respir Crit Care Med. 2012;185(12):1286–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Dahlin A, Denny J, Roden DM, Brilliant MH, Ingram C, Kitchner TE, et al. CMTR1 is associated with increased asthma exacerbations in patients taking inhaled corticosteroids. Immun Inflamm Dis. 2015;3(4):350–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Wang Y, Tong C, Wang Z, Wang Z, Mauger D, Tantisira KG, et al. Pharmacodynamic genome-wide association study identifies new responsive loci for glucocorticoid intervention in asthma. Pharmacogenomics J. 2015;15(5):422–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Mosteller M, Hosking L, Murphy K, Shen J, Song K, Nelson M, et al. No evidence of large genetic effects on steroid response in asthma patients. J Allergy Clin Immunol. 2017;139(3):797–803.e7.

    Article  CAS  PubMed  Google Scholar 

  108. Hernandez-Pacheco N, Farzan N, Francis B, Karimi L, Repnik K, Vijverberg SJ, et al. Genome-wide association study of inhaled corticosteroid response in admixed children with asthma. Clin Exp Allergy. 2019;49(6):789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Slob EMA, Vijverberg SJH, Palmer CNA, Zazuli Z, Farzan N, Oliveri NMB, et al. Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: a systematic review. Pediatr Allergy Immunol. 2018;29(7):705–14.

    Article  PubMed  Google Scholar 

  110. Rebordosa C, Kogevinas M, Guerra S, Castro-Giner F, Jarvis D, Cazzoletti L, et al. ADRB2 Gly16Arg polymorphism, asthma control and lung function decline. Eur Respir J. 2011;38(5):1029–35.

    Article  CAS  PubMed  Google Scholar 

  111. Bleecker ER, Nelson HS, Kraft M, Corren J, Meyers DA, Yancey SW, et al. Beta2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate. Am J Respir Crit Care Med. 2010;181(7):676–87.

    Article  CAS  PubMed  Google Scholar 

  112. Yancey SW, Klotsman M, Ortega HG, Edwards LD, Anderson WH. Acute and chronic lung function responses to salmeterol and salmeterol plus fluticasone propionate in relation to Arg16Gly beta(2)-adrenergic polymorphisms. Curr Med Res Opin. 2009;25(4):1011–8.

    Article  CAS  PubMed  Google Scholar 

  113. Jabbal S, Manoharan A, Anderson W, Lipworth J, Lipworth B. Real-life effect of long-acting β2-agonist withdrawal in patients with controlled step 3 asthma. Ann Allergy Asthma Immunol. 2016;117(4):430–1.

    Article  PubMed  Google Scholar 

  114. Lee DKC, Currie GP, Hall IP, Lima JJ, Lipworth BJ. The arginine-16 beta2-adrenoceptor polymorphism predisposes to bronchoprotective subsensitivity in patients treated with formoterol and salmeterol. Br J Clin Pharmacol. 2004;57(1):68–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Bleecker ER, Yancey SW, Baitinger LA, Edwards LD, Klotsman M, Anderson WH, et al. Salmeterol response is not affected by beta2-adrenergic receptor genotype in subjects with persistent asthma. J Allergy Clin Immunol. 2006;118(4):809–16.

    Article  CAS  PubMed  Google Scholar 

  116. Bonini M, Permaul P, Kulkarni T, Kazani S, Segal A, Sorkness CA, et al. Loss of salmeterol bronchoprotection against exercise in relation to ADRB2 Arg16Gly polymorphism and exhaled nitric oxide. Am J Respir Crit Care Med. 2013;188(12):1407–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Konno S, Hizawa N, Makita H, Shimizu K, Sakamoto T, Kokubu F, et al. The effects of a Gly16Arg ADRB2 polymorphism on responses to salmeterol or montelukast in Japanese patients with mild persistent asthma. Pharmacogenet Genomics. 2014;24(5):246–55.

    CAS  PubMed  Google Scholar 

  118. Taylor DR, Hancox RJ, McRae W, Cowan JO, Flannery EM, McLachlan CR, et al. The influence of polymorphism at position 16 of the beta2-adrenoceptor on the development of tolerance to beta-agonist. J Asthma. 2000;37(8):691–700.

    Article  CAS  PubMed  Google Scholar 

  119. Bateman ED, Kornmann O, Schmidt P, Pivovarova A, Engel M, Fabbri LM. Tiotropium is noninferior to salmeterol in maintaining improved lung function in B16-Arg/Arg patients with asthma. J Allergy Clin Immunol. 2011;128(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  120. Wechsler ME, Lehman E, Lazarus SC, Lemanske RF, Boushey HA, Deykin A, et al. beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med. 2006;173(5):519–26.

    Article  CAS  PubMed  Google Scholar 

  121. Wechsler ME, Kunselman SJ, Chinchilli VM, Bleecker E, Boushey HA, Calhoun WJ, et al. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet. 2009;374(9703):1754–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Kim SH, Ye YM, Lee HY, Sin HJ, Park HS. Combined pharmacogenetic effect of ADCY9 and ADRB2 gene polymorphisms on the bronchodilator response to inhaled combination therapy. J Clin Pharm Ther. 2011;36(3):399–405.

    Article  CAS  PubMed  Google Scholar 

  123. Lee DKC, Jackson CM, Bates CE, Lipworth BJ. Cross tolerance to salbutamol occurs independently of beta2 adrenoceptor genotype-16 in asthmatic patients receiving regular formoterol or salmeterol. Thorax. 2004;59(8):662–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Palmer CNA, Lipworth BJ, Lee S, Ismail T, Macgregor DF, Mukhopadhyay S. Arginine-16 beta2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax. 2006;61(11):940–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Basu K, Palmer CNA, Tavendale R, Lipworth BJ, Mukhopadhyay S. Adrenergic beta(2)-receptor genotype predisposes to exacerbations in steroid-treated asthmatic patients taking frequent albuterol or salmeterol. J Allergy Clin Immunol. 2009;124(6):1188–1194.e3.

    Article  CAS  PubMed  Google Scholar 

  126. Lipworth BJ, Basu K, Donald HP, Tavendale R, Macgregor DF, Ogston SA, et al. Tailored second-line therapy in asthmatic children with the Arg(16) genotype. Clin Sci (Lond). 2013;124(8):521–8.

    Article  CAS  Google Scholar 

  127. Zuurhout MJL, Vijverberg SJH, Raaijmakers JAM, Koenderman L, Postma DS, Koppelman GH, et al. Arg16 ADRB2 genotype increases the risk of asthma exacerbation in children with a reported use of long-acting β2-agonists: results of the PACMAN cohort. Pharmacogenomics. 2013;14(16):1965–71.

    Article  CAS  PubMed  Google Scholar 

  128. Giubergia V, Gravina L, Castaños C, Chertkoff L. Influence of β(2)-adrenergic receptor polymorphisms on asthma exacerbation in children with severe asthma regularly receiving salmeterol. Ann Allergy Asthma Immunol. 2013;110(3):156–60.

    Article  CAS  PubMed  Google Scholar 

  129. Ortega VE, Hawkins GA, Moore WC, Hastie AT, Ampleford EJ, Busse WW, et al. Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting β agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med. 2014;2(3):204–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Vijverberg SJ, Pijnenburg MW, Hövels AM, Koppelman GH, Maitland-van der Zee A-H. The need for precision medicine clinical trials in childhood asthma: rationale and design of the PUFFIN trial. Pharmacogenomics. 2017;18(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  131. Telleria JJ, Blanco-Quiros A, Varillas D, Armentia A, Fernandez-Carvajal I, Jesus Alonso M, et al. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med. 2008;102(6):857–61.

    Article  PubMed  Google Scholar 

  132. Drazen JM, Yandava CN, Dubé L, Szczerback N, Hippensteel R, Pillari A, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet. 1999;22(2):168–70.

    Article  CAS  PubMed  Google Scholar 

  133. Lima JJ, Zhang S, Grant A, Shao L, Tantisira KG, Allayee H, et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med. 2006;173(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  134. Klotsman M, York TP, Pillai SG, Vargas-Irwin C, Sharma SS, van den Oord EJCG, et al. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics. 2007;17(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  135. Kotani H, Kishi R, Mouri A, Sashio T, Shindo J, Shiraki A, et al. Influence of leukotriene pathway polymorphisms on clinical responses to montelukast in Japanese patients with asthma. J Clin Pharm Ther. 2012;37(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  136. Tantisira KG, Lima J, Sylvia J, Klanderman B, Weiss ST. 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics. 2009;19(3):244–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Dahlin A, Litonjua A, Lima JJ, Tamari M, Kubo M, Irvin CG, et al. Genome-wide association study identifies novel pharmacogenomic loci for therapeutic response to montelukast in asthma. PLoS One. 2015;10(6):e0129385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Dahlin A, Litonjua A, Irvin CG, Peters SP, Lima JJ, Kubo M, et al. Genome-wide association study of leukotriene modifier response in asthma. Pharmacogenomics J. 2016;16(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  139. Condreay L, Chiano M, Ortega H, Buchan N, Harris E, Bleecker ER, et al. No genetic association detected with mepolizumab efficacy in severe asthma. Respir Med. 2017;132:178–80.

    Article  PubMed  Google Scholar 

  140. Isidoro-García M, Sánchez-Martín A, García-Sánchez A, Sanz C, García-Berrocal B, Dávila I. Pharmacogenetics and the treatment of asthma. Pharmacogenomics. 2017;18(13):1271–80.

    Article  CAS  PubMed  Google Scholar 

  141. Xiao C, Biagini Myers JM, Ji H, Metz K, Martin LJ, Lindsey M, et al. Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. J Allergy Clin Immunol. 2015;136(4):923–931.e3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R, et al. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol. 2017;52(12):1616–27.

    Article  PubMed  Google Scholar 

  143. de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, et al. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J. 2018;51(1):1701817.

    Article  CAS  PubMed  Google Scholar 

  144. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

    Article  PubMed  Google Scholar 

  145. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    Article  PubMed  Google Scholar 

  146. Slob EM, Vijverberg SJ, Pijnenburg MW, Koppelman GH, der Zee A-HM. What do we need to transfer pharmacogenetics findings into the clinic? Pharmacogenomics. 2018;19(7):589–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Bønnelykke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bønnelykke, K., Koppelman, G.H., Slob, E.M.A., Vijverberg, S.J.H., Maitland-van der Zee, A.H. (2020). Genomics and Pharmacogenomics of Severe Childhood Asthma. In: Forno, E., Saglani, S. (eds) Severe Asthma in Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-030-27431-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27431-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27433-7

  • Online ISBN: 978-3-030-27431-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics