Advertisement

Severe Asthma: Clinical Studies and Clinical Trials in Children

  • Ngoc P. LyEmail author
Chapter

Abstract

Pediatric severe asthma is a heterogeneous disorder that is challenging to manage and treat. Children with severe asthma have increased risk for short- and potentially long-term adverse outcomes. In an effort to improve prognostic and therapeutic decision-making, complex statistical modeling has been used to identify specific or common characteristics (phenotypes) that separate patients with severe asthma into distinct groups (subtypes) with the goal of identifying clearly defined pathophysiological mechanisms (endotypes) and their associated biomarkers that can direct targeted therapies.

In children, there are overlapping phenotypes that fluctuate over time, with age, or in response to treatment. Thus, while asthma phenotyping has shed light on asthma heterogeneity, the translation to clinical practice remains limited. Recent advances in molecular techniques offer promising opportunities to link distinct phenotypes with underlying molecular mechanisms. Endotypic discovery is crucial, particularly with the emergence of biologic therapies and the goal of directing precision medicine in the treatment of these patients.

This chapter highlights important clinical research that has advanced our knowledge of the clinical, genetic, and molecular characteristics of pediatric severe asthma and outlines current knowledge gaps and potential future areas of research.

Keywords

Phenotype Endotype Genotype Biomarkers Cluster analyses 

References

  1. 1.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Okelo SO, Butz AM, Sharma R, Diette GB, Pitts SI, King TM, et al. Interventions to modify health care provider adherence to asthma guidelines: a systematic review. Pediatrics. 2013;132(3):517–34.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(3):636–45.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Covar RA, Leung DY, McCormick D, Steelman J, Zeitler P, Spahn JD. Risk factors associated with glucocorticoid-induced adverse effects in children with severe asthma. J Allergy Clin Immunol. 2000;106(4):651–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Just J, Bourgoin-Heck M, Amat F. Clinical phenotypes in asthma during childhood. Clin Exp Allergy. 2017;47(7):848–55.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Teague WG, Phillips BR, Fahy JV, Wenzel SE, Fitzpatrick AM, Moore WC, et al. Baseline Features of the Severe Asthma Research Program (SARP III) cohort: differences with age. J Allergy Clin Immunol Pract. 2018;6(2):554.e4.CrossRefGoogle Scholar
  7. 7.
    Sorkness RL, Zoratti EM, Kattan M, Gergen PJ, Evans MD, Visness CM, et al. Obstruction phenotype as a predictor of asthma severity and instability in children. J Allergy Clin Immunol. 2018;142(4):1099.e4.CrossRefGoogle Scholar
  8. 8.
    Fitzpatrick AM, Higgins M, Holguin F, Brown LA, Teague WG, National Institutes of Health/National Heart, Lung. The molecular phenotype of severe asthma in children. J Allergy Clin Immunol. 2010;125(4):857.e18.CrossRefGoogle Scholar
  9. 9.
    Cowan K, Guilbert TW. Pediatric asthma phenotypes. Curr Opin Pediatr. 2012;24(3):344–51.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brand PL, Caudri D, Eber E, Gaillard EA, Garcia-Marcos L, Hedlin G, et al. Classification and pharmacological treatment of preschool wheezing: changes since 2008. Eur Respir J. 2014;43(4):1172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy Immunol Pulmonol. 2018;31(2):44–55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–23.CrossRefGoogle Scholar
  13. 13.
    Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797–807.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schatz M, Hsu JW, Zeiger RS, Chen W, Dorenbaum A, Chipps BE, et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2014;133(6):1549–56.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Newby C, Heaney LG, Menzies-Gow A, Niven RM, Mansur A, Bucknall C, et al. Statistical cluster analysis of the British Thoracic Society Severe refractory Asthma Registry: clinical outcomes and phenotype stability. PLoS One. 2014;9(7):e102987.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol. 2011;127(2):13.Google Scholar
  18. 18.
    Dolan CM, Fraher KE, Bleecker ER, Borish L, Chipps B, Hayden ML, et al. Design and baseline characteristics of the epidemiology and natural history of asthma: Outcomes and Treatment Regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol. 2004;92(1):32–9.CrossRefGoogle Scholar
  19. 19.
    Osborne ML, Vollmer WM, Linton KL, Buist AS. Characteristics of patients with asthma within a large HMO: a comparison by age and gender. Am J Respir Crit Care Med. 1998;157(1):123–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schatz M, Camargo CA. The relationship of sex to asthma prevalence, health care utilization, and medications in a large managed care organization. Ann Allergy Asthma Immunol. 2003;91(6):553–8.CrossRefGoogle Scholar
  21. 21.
    Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol. 2007;119(2):405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Phelan PD, Robertson CF, Olinsky A. The Melbourne Asthma Study: 1964-1999. J Allergy Clin Immunol. 2002;109(2):189–94.CrossRefGoogle Scholar
  23. 23.
    Rasmussen F, Taylor DR, Flannery EM, Cowan JO, Greene JM, Herbison GP, et al. Risk factors for airway remodeling in asthma manifested by a low postbronchodilator FEV1/vital capacity ratio: a longitudinal population study from childhood to adulthood. Am J Respir Crit Care Med. 2002;165(11):1480–8.CrossRefGoogle Scholar
  24. 24.
    Sears MR, Greene JM, Willan AR, Wiecek EM, Taylor DR, Flannery EM, et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003;349(15):1414–22.CrossRefGoogle Scholar
  25. 25.
    Covar RA, Spahn JD, Murphy JR, Szefler SJ, Childhood Asthma Management Program Research Group. Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med. 2004;170(3):234–41.CrossRefGoogle Scholar
  26. 26.
    Chang TS, Lemanske RF, Mauger DT, Fitzpatrick AM, Sorkness CA, Szefler SJ, et al. Childhood asthma clusters and response to therapy in clinical trials. J Allergy Clin Immunol. 2014;133(2):363–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med. 2000;162(6):2341–51.Google Scholar
  28. 28.
    National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007;120(5 Suppl):94.Google Scholar
  29. 29.
    Fitzpatrick AM, Moore WC. Severe asthma phenotypes – how should they guide evaluation and treatment? J Allergy Clin Immunol Pract. 2017;5(4):901–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–75.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cosmi L, Liotta F, Maggi L, Annunziato F. Role of type 2 innate lymphoid cells in allergic diseases. Curr Allergy Asthma Rep. 2017;17(10):9.CrossRefGoogle Scholar
  33. 33.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev. 2017;278(1):145–61.CrossRefGoogle Scholar
  36. 36.
    Lex C, Payne DN, Zacharasiewicz A, Li AM, Wilson NM, Hansel TT, et al. Sputum induction in children with difficult asthma: safety, feasibility, and inflammatory cell pattern. Pediatr Pulmonol. 2005;39(4):318–24.CrossRefGoogle Scholar
  37. 37.
    Hauk PJ, Krawiec M, Murphy J, Boguniewicz J, Schiltz A, Goleva E, et al. Neutrophilic airway inflammation and association with bacterial lipopolysaccharide in children with asthma and wheezing. Pediatr Pulmonol. 2008;43(9):916–23.CrossRefGoogle Scholar
  38. 38.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8.CrossRefGoogle Scholar
  39. 39.
    Gibson PG, Simpson JL, Hankin R, Powell H, Henry RL. Relationship between induced sputum eosinophils and the clinical pattern of childhood asthma. Thorax. 2003;58(2):116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Samitas K, Zervas E, Gaga M. T2-low asthma: current approach to diagnosis and therapy. Curr Opin Pulm Med. 2017;23(1):48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Andersson CK, Adams A, Nagakumar P, Bossley C, Gupta A, De Vries D, et al. Intraepithelial neutrophils in pediatric severe asthma are associated with better lung function. J Allergy Clin Immunol. 2017;139(6):1829.e11.CrossRefGoogle Scholar
  42. 42.
    Fleming L, Tsartsali L, Wilson N, Regamey N, Bush A. Sputum inflammatory phenotypes are not stable in children with asthma. Thorax. 2012;67(8):675–81.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bossley CJ, Fleming L, Ullmann N, Gupta A, Adams A, Nagakumar P, et al. Assessment of corticosteroid response in pediatric patients with severe asthma by using a multidomain approach. J Allergy Clin Immunol. 2016;138(2):420.e6.CrossRefGoogle Scholar
  44. 44.
    Bossley CJ, Fleming L, Gupta A, Regamey N, Frith J, Oates T, et al. Pediatric severe asthma is characterized by eosinophilia and remodeling without T(H)2 cytokines. J Allergy Clin Immunol. 2012;129(4):82.e13.CrossRefGoogle Scholar
  45. 45.
    Guilbert TW, Bacharier LB, Fitzpatrick AM. Severe asthma in children. J Allergy Clin Immunol Pract. 2014;2(5):489–500.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 2014;133(6):63.e5.CrossRefGoogle Scholar
  48. 48.
    Pavlidis S, Takahashi K, Ng Kee Kwong F, Xie J, Hoda U, Sun K. et al, “T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur Respir J. 2019;53(1).  https://doi.org/10.1183/13993003.00938-2018.
  49. 49.
    Kim CK, Koh YY, Callaway Z. The validity of induced sputum and bronchoalveolar lavage in childhood asthma. J Asthma. 2009;46(2):105–12.CrossRefGoogle Scholar
  50. 50.
    Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–75.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJ, Bel EH, et al. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015;70(2):115–20.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ullmann N, Bossley CJ, Fleming L, Silvestri M, Bush A, Saglani S. Blood eosinophil counts rarely reflect airway eosinophilia in children with severe asthma. Allergy. 2013;68(3):402–6.CrossRefGoogle Scholar
  53. 53.
    Price D, Wilson AM, Chisholm A, Rigazio A, Burden A, Thomas M, et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Massanari M, Holgate ST, Busse WW, Jimenez P, Kianifard F, Zeldin R. Effect of omalizumab on peripheral blood eosinophilia in allergic asthma. Respir Med. 2010;104(2):188–96.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549–56.CrossRefGoogle Scholar
  56. 56.
    Yancey SW, Keene ON, Albers FC, Ortega H, Bates S, Bleecker ER, et al. Biomarkers for severe eosinophilic asthma. J Allergy Clin Immunol. 2017;140(6):1509–18.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Busse W, Spector S, Rosen K, Wang Y, Alpan O. High eosinophil count: a potential biomarker for assessing successful omalizumab treatment effects. J Allergy Clin Immunol. 2013;132(2):6.e11.CrossRefGoogle Scholar
  58. 58.
    Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol. 2012;129(3 Suppl):9.CrossRefGoogle Scholar
  59. 59.
    Bobolea I, Barranco P, Del Pozo V, Romero D, Sanz V, Lopez-Carrasco V, et al. Sputum periostin in patients with different severe asthma phenotypes. Allergy. 2015;70(5):540–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford). 2016;55(10):1714–25.CrossRefGoogle Scholar
  61. 61.
    Inoue T, Akashi K, Watanabe M, Ikeda Y, Ashizuka S, Motoki T, et al. Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr Allergy Immunol. 2016;27(5):521–6.CrossRefGoogle Scholar
  62. 62.
    Song JS, You JS, Jeong SI, Yang S, Hwang IT, Im YG, et al. Serum periostin levels correlate with airway hyper-responsiveness to methacholine and mannitol in children with asthma. Allergy. 2015;70(6):674–81.CrossRefGoogle Scholar
  63. 63.
    Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–15.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Petsky HL, Kew KM, Chang AB. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst Rev. 2016;11:CD011439.PubMedGoogle Scholar
  65. 65.
    Hastie AT, Moore WC, Li H, Rector BM, Ortega VE, Pascual RM, et al. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J Allergy Clin Immunol. 2013;132(1):72–80.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Park SY, Hong GH, Park S, Shin B, Yoon SY, Kwon HS, et al. Serum progranulin as an indicator of neutrophilic airway inflammation and asthma severity. Ann Allergy Asthma Immunol. 2016;117(6):646–50.CrossRefGoogle Scholar
  67. 67.
    Chien JW, Lin CY, Yang KD, Lin CH, Kao JK, Tsai YG. Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clin Exp Allergy. 2013;43(9):1018–26.CrossRefGoogle Scholar
  68. 68.
    Wisniewski JA, Muehling LM, Eccles JD, Capaldo BJ, Agrawal R, Shirley DA, et al. TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. J Allergy Clin Immunol. 2018;141(6):2060.e13.CrossRefGoogle Scholar
  69. 69.
    Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, et al. TWEAK enhances TGF-beta-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res. 2015;16:5.CrossRefGoogle Scholar
  70. 70.
    Xu H, Okamoto A, Ichikawa J, Ando T, Tasaka K, Masuyama K, et al. TWEAK/Fn14 interaction stimulates human bronchial epithelial cells to produce IL-8 and GM-CSF. Biochem Biophys Res Commun. 2004;318(2):422–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kim SY, Kim JD, Sol IS, Kim MJ, Kim MN, Hong JY, et al. Sputum TWEAK expression correlates with severity and degree of control in non-eosinophilic childhood asthma. Pediatr Allergy Immunol. 2018;29(1):42–9.CrossRefGoogle Scholar
  72. 72.
    Zhu C, Zhang L, Liu Z, Li C, Bai Y. TWEAK/Fn14 interaction induces proliferation and migration in human airway smooth muscle cells via activating the NF-kappaB pathway. J Cell Biochem. 2018;119(4):3528–36.CrossRefGoogle Scholar
  73. 73.
    Bara I, Ozier A, Girodet PO, Carvalho G, Cattiaux J, Begueret H, et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am J Respir Crit Care Med. 2012;185(7):715–22.CrossRefGoogle Scholar
  74. 74.
    Konradsen JR, James A, Nordlund B, Reinius LE, Soderhall C, Melen E, et al. The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J Allergy Clin Immunol. 2013;132(2):35.e5.CrossRefGoogle Scholar
  75. 75.
    Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27.CrossRefGoogle Scholar
  76. 76.
    James A, Stenberg Hammar K, Reinius L, Konradsen JR, Dahlen SE, Soderhall C, et al. A longitudinal assessment of circulating YKL-40 levels in preschool children with wheeze. Pediatr Allergy Immunol. 2017;28(1):79–85.CrossRefGoogle Scholar
  77. 77.
    Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O, Schlotterbeck G, et al. Analytical reproducibility in (1)H NMR-based metabonomic urinalysis. Chem Res Toxicol. 2002;15(11):1380–6.CrossRefGoogle Scholar
  78. 78.
    Zhang A, Sun H, Wu X, Wang X. Urine metabolomics. Clin Chim Acta. 2012;414:65–9.CrossRefGoogle Scholar
  79. 79.
    Park YH, Fitzpatrick AM, Medriano CA, Jones DP. High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J Allergy Clin Immunol. 2017;139(5):1524.e4.CrossRefGoogle Scholar
  80. 80.
    Mathias RA. Introduction to genetics and genomics in asthma: genetics of asthma. Adv Exp Med Biol. 2014;795:125–55.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Holgate ST. ADAM metallopeptidase domain 33 (ADAM33): identification and role in airways disease. Drug News Perspect. 2010;23(6):381–7.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tripathi P, Awasthi S, Gao P. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm. 2014;2014:572025.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Finkelstein Y, Bournissen FG, Hutson JR, Shannon M. Polymorphism of the ADRB2 gene and response to inhaled beta- agonists in children with asthma: a meta-analysis. J Asthma. 2009;46(9):900–5.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Turner S, Francis B, Vijverberg S, Pino-Yanes M, Maitland-van der Zee AH, Basu K, et al. Childhood asthma exacerbations and the Arg16 beta2-receptor polymorphism: a meta-analysis stratified by treatment. J Allergy Clin Immunol. 2016;138(1):113.CrossRefGoogle Scholar
  85. 85.
    Lipworth BJ, Basu K, Donald HP, Tavendale R, Macgregor DF, Ogston SA, et al. Tailored second-line therapy in asthmatic children with the Arg(16) genotype. Clin Sci (Lond). 2013;124(8):521–8.CrossRefGoogle Scholar
  86. 86.
    Peters MC, Mekonnen ZK, Yuan S, Bhakta NR, Woodruff PG, Fahy JV. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133(2):388–94.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Baines KJ, Simpson JL, Wood LG, Scott RJ, Gibson PG. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol. 2011;127(1):9.CrossRefGoogle Scholar
  88. 88.
    Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X, et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191(10):1116–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Pulmonary Medicine, Department of PediatricsUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations