Biosynthesis and Degradation of Trehalose and Its Potential to Control Plant Growth, Development, and (A)biotic Stress Tolerance

  • Le Cong Huyen Bao Tran Phan
  • Patrick Van DijckEmail author


Trehalose is a nonreducing disaccharide that consists of two glucose monomers bound by an α,α-1,1-glucoside bond. Trehalose is present in a wide range of organisms such as bacteria, fungi, invertebrates, and plants. It has been demonstrated that trehalose stabilizes proteins and lipid membranes under various stress conditions, including heat stress, carbon starvation, osmotic or oxidative stress, etc. In most plants, trehalose levels are negligible, although there are many genes linked to trehalose biosynthesis. For instance, in Arabidopsis thaliana, there are 11 orthologues of the microbial trehalose-6-phosphate (T6P) synthase (TPS) family, divided in 2 classes, and there are 10 T6P phosphatases (TPPs). TPS converts UDP-glucose and glucose-6-phosphate into T6P with the help of TPS enzymes, and this T6P is hydrolyzed by TPPs to produce trehalose. In general, there is much less and often only one (as in A. thaliana) enzyme trehalase (TRE) that hydrolyzes trehalose into two glucose monomers. It has been shown that trehalose metabolism is critical for normal plant growth and development. Trehalose feeding causes growth arrest as stunted root growth and undeveloped primary leaves of seedlings. Modification of T6P levels by expression of either microbial TPS or TPP enzymes also results in aberrant growth phenotypes, which indicates that the level of T6P is very important for correct plant development. T6P levels also provide plants with information regarding the sugar status of the plants. Overexpression of both TPS and TPP or overexpression of active plant TPS enzymes results in small increases in trehalose levels and in an increased stress tolerance. However, the latter phenotype cannot be explained by the stress-protecting characteristics of trehalose as the concentrations are too low. Therefore, the hypothesis is that small changes in trehalose and/or T6P levels affect many plant characteristics, including growth, development, and stress tolerance. All these aspects are discussed in this chapter with a focus on what is known in A. thaliana but also including the recent findings in crop plants.


Trehalose Trehalose-6-phosphate Trehalose metabolism Plant growth Plant development Stress tolerance 


  1. Ali Q, Ashraf M (2011) Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ Exp Bot 71:249–259CrossRefGoogle Scholar
  2. Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485–1493Google Scholar
  3. Anselmino O, Gilg E (1913) Trehalose in Selaginella. Bericth der Deutschen pharmazeutischen Gesellschaft 23:326–327Google Scholar
  4. Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136:3649–3659PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109PubMedPubMedCentralCrossRefGoogle Scholar
  6. Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized Bifunctional TPS–TPP protein as putative ancestor of all eukaryotic Trehalose biosynthesis proteins. Mol Biol Evol 27(2):359–269PubMedCrossRefGoogle Scholar
  7. Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942PubMedCrossRefGoogle Scholar
  9. Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, Avonce N, Quinto C, Díaz-Camino C, Sanchez F (2016) The class II Trehalose 6-phosphate synthase gene PvTPS9 modulates Trehalose metabolism in Phaseolus vulgaris nodules. Front Plant Sci 7:1589PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Lloyd W, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brodmann D, Schuller A, Muller JL, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant-Microbe Interact 15(7):693–700PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cho YH, Hong JW, Kim EC, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964PubMedPubMedCentralCrossRefGoogle Scholar
  14. Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Comparisons of early transcriptome responses to low-oxygen environments in three dicotyledonous plant species. Plant Signal Behav 5(8):1006–1009PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82CrossRefGoogle Scholar
  16. Couee I, Sulmon C, Gouesbet G, El-Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833CrossRefGoogle Scholar
  18. De Smet KAL, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  19. Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P (2015) Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J 466(2):283–290PubMedCrossRefPubMedCentralGoogle Scholar
  20. Djonović S, Urbach JM, Drenkard E et al (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9:e1003217PubMedPubMedCentralCrossRefGoogle Scholar
  21. Domínguez-Ferreras A, Soto MJ, Pérez-Arnedo R, Olivares J, Sanjuán J (2009) Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol 191:7490–7499PubMedPubMedCentralCrossRefGoogle Scholar
  22. Drennan PM, Smith MT, Goldsworth D, Van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496CrossRefGoogle Scholar
  23. Eastmond PI, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235PubMedCrossRefPubMedCentralGoogle Scholar
  24. El-Bashiti T, Hamamci H, Oktem HA, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54CrossRefGoogle Scholar
  25. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17–27CrossRefGoogle Scholar
  26. Farias-Rodriguez R, Mellor RB, Arias C, Pena-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359CrossRefGoogle Scholar
  27. Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236:355–369PubMedCrossRefPubMedCentralGoogle Scholar
  29. Frison M, Parrou JL, Guillaumot D, Masquelier D, François J, Chaumont F, Batoko H (2007) The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity. FEBS Lett 581:4010–4016PubMedCrossRefPubMedCentralGoogle Scholar
  30. Garcia AB, Engler JD, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169PubMedPubMedCentralCrossRefGoogle Scholar
  31. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903PubMedPubMedCentralCrossRefGoogle Scholar
  32. Glinski M, Weckwerth W (2005) Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana - a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Mol Cell Proteomics 4:1614–1625PubMedCrossRefGoogle Scholar
  33. Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319PubMedCrossRefGoogle Scholar
  34. Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RWHH, de Graaf PTHM, Poels J, van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13PubMedGoogle Scholar
  36. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gravot A, Grillet L, Wagner G, Jubault M, Lariagon C, Baron C, De-leu C, Delourme R, Bouchereau A, Manzanares-Dauleux MJ (2011) Genetic and physiological analysis of the relationship between partial resistance to clubroot and tolerance to trehalose in Arabidopsis thaliana. New Phytol 191:1083–1094PubMedCrossRefGoogle Scholar
  38. Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47:211–223PubMedCrossRefPubMedCentralGoogle Scholar
  39. Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hirt H, Shinozaki K (eds) (2004) Plant responses to abiotic stress. Springer, BerlinGoogle Scholar
  41. Hodge S, Ward JL, Beale MH, Bennett M, Mansfield JW, Powell G (2013) Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density. Planta 237:1057–1064PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hofmann J, Ashry E, Ael N, Anwar S, Erban A, Kopka J, Grundler F (2010) Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J 62:1058–1071PubMedPubMedCentralGoogle Scholar
  43. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. Plant Biol 50:1223–1229Google Scholar
  44. Iturriaga G, Gaff DF, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central high-lands of Mexico, accumulate trehalose. Aust J Bot 48:153–158CrossRefGoogle Scholar
  45. Iturriaga G, Cushman MAF, Cushman JC (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170:1173–1184CrossRefGoogle Scholar
  46. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168PubMedPubMedCentralCrossRefGoogle Scholar
  47. Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386CrossRefGoogle Scholar
  48. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci U S A 102(31):11118–11123PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kondrák M, Marincs F, Antal F, Juhász Z, Bánfalvi Z (2012) Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol 12:e74CrossRefGoogle Scholar
  50. Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-re- lated trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339PubMedCrossRefGoogle Scholar
  51. Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513PubMedCrossRefGoogle Scholar
  52. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018CrossRefGoogle Scholar
  53. Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129PubMedPubMedCentralCrossRefGoogle Scholar
  54. López MF, Männer P, Willmann A, Hampp R, Nehls U (2007) Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. New Phytol 174:389–398PubMedCrossRefGoogle Scholar
  55. López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C (2008a) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650PubMedCrossRefGoogle Scholar
  56. López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008b) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582PubMedCrossRefGoogle Scholar
  57. López M, Tejera NA, Lluch C (2009) Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. J Plant Physiol 166:1218–1222PubMedCrossRefGoogle Scholar
  58. Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563CrossRefGoogle Scholar
  60. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolisms in plants. Plant J 79:544–567PubMedCrossRefGoogle Scholar
  61. Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384CrossRefGoogle Scholar
  62. Martin F, Boiffin V, Pfeffer PE (1998) Carbohydrate and amino acid metabolism in the Eucalyptus globulus–Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol 118:627–635PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181PubMedCrossRefGoogle Scholar
  64. Muchembled J (2006) Changes in lipid composition of Blumeria graminis f. sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Phytochemistry 67:1104–1109PubMedCrossRefGoogle Scholar
  65. Müller J, Staehelin C, Mellor RB, Boller T, Wiemken A (1992) Partial purification and characterization of trehalase from soybean nodules. Plant Physiol 140:8–13CrossRefGoogle Scholar
  66. Müller J, Boller T, Wiemken A (1995) Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root-nodules of soybean and cowpea. Planta 197:362–368Google Scholar
  67. Müller J, Boller T, Wiemken A (1998) Trehalose affects sucrose synthase and invertase activities in soybean (Glycine max [L.] Merr.) roots. Plant Physiol 153:255–257CrossRefGoogle Scholar
  68. Müller J, Aeschbacher RA, Wingler A, Boller T, Wiemken A (2001a) Trehalose and trehalase in Arabidopsis. Plant Physiol 125:1086–1093PubMedPubMedCentralCrossRefGoogle Scholar
  69. Müller J, Boller T, Wiemken A (2001b) Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. J Exp Bot 52:943–947PubMedCrossRefGoogle Scholar
  70. O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant 6(2):261–274PubMedCrossRefPubMedCentralGoogle Scholar
  71. Osuna D, Usadel B, Morcuende R, Gibon Y, Blasing OE (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–491PubMedCrossRefPubMedCentralGoogle Scholar
  72. Pampurova S, Van Dijck P (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290CrossRefGoogle Scholar
  73. Pampurova S, Verschooten K, Avonce N, Van Dijck P (2014) Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. J Plant Res 127:803–813PubMedPubMedCentralCrossRefGoogle Scholar
  74. Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  75. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441PubMedCrossRefGoogle Scholar
  76. Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2:71–82PubMedCrossRefGoogle Scholar
  77. Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762CrossRefGoogle Scholar
  78. Qu Q, Lee SJ, Boss W (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archeon Thermococcus litoralis. J Biol Chem 279:47890–47897PubMedCrossRefGoogle Scholar
  79. Ramon M, Rolland F, Thevelein JM, Van Dijck P, Leyman B (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol Biol 63:195–206PubMedCrossRefGoogle Scholar
  80. Ramon M, De Smet I, Vandesteene L, Naudts M, Leyman B, Van Dijck P, Rolland F, Beeckman T, Thevelein JM (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ 32:1015–1032PubMedCrossRefPubMedCentralGoogle Scholar
  81. Renard-Merlier Dea (2007) Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Phytochemistry 68:1156–1164CrossRefGoogle Scholar
  82. Richards A, Krakowka S, Dexter L, Schmid H, Wolterbeek A, Waalkens-Berendsen D, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898PubMedCrossRefPubMedCentralGoogle Scholar
  83. Roitsch T (1999) Source–sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206PubMedCrossRefPubMedCentralGoogle Scholar
  84. Romero C, Bellés JM, Vayá JL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297CrossRefGoogle Scholar
  85. Romero C, Cruz Cutanda M, Cortina C, Primo J, Culiáñez-Macià FA (2002) Plant environmental stress response by trehalose biosynthesis. Curr Top Plant Biol 3:73–88Google Scholar
  86. Salazar JR, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59CrossRefGoogle Scholar
  87. Salminen SO, Streeter JG (1986) Enzymes of α, α-trehalose metabolism in soybean nodules. Plant Physiol 81:538–541PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43PubMedPubMedCentralCrossRefGoogle Scholar
  89. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230PubMedCrossRefGoogle Scholar
  90. Schluepmann H, Pellny T, Van Dijken A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6849–6854PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to Trehalose-6-phosphate accumulation. Plant Physiol 135:879–890PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schluepmann H, Berke L, Sanchez-Perez GF (2012) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot 63:3379–3390PubMedCrossRefPubMedCentralGoogle Scholar
  93. Schmid M, Davison TS, Henz SR, Pape UJ, Bemar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506PubMedCrossRefPubMedCentralGoogle Scholar
  94. Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201PubMedCrossRefPubMedCentralGoogle Scholar
  95. Singh V, Louis J, Ayre BG, Reese JC, Shah J (2011) TREHALOSE PHOSPHATE SYNTHASE 11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J 67:94–104PubMedCrossRefPubMedCentralGoogle Scholar
  96. Stiller I, Dulai S, Kondrák M, Tarnai R, Szabo L, Toldi O, Bánfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308CrossRefGoogle Scholar
  97. Suárez R, Wong A, Ramiréz M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernandéz G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966PubMedCrossRefPubMedCentralGoogle Scholar
  98. Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275PubMedCrossRefPubMedCentralGoogle Scholar
  99. Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar AH (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:1185–1191CrossRefGoogle Scholar
  100. Thiel J, Rolletschek H, Friedel S, Lunn JE, Nguyen TH, Feil R, Tschiersch H, Muller M, Borisjuk L (2011) Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana. BMC Plant Biol 11:48PubMedPubMedCentralCrossRefGoogle Scholar
  101. Trevisol ETV, Panek AD, De Mesquita JF, Eleutherio ECA (2014) Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim Biophys Acta 1840:1646–1650PubMedCrossRefPubMedCentralGoogle Scholar
  102. Van Dijck P, Mascorro-Gallardo JO, De Bus M, Royackers K, Iturriagan G, Thevelein JM (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem J 366:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  103. van Dijken AJH, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growthand transition to flowering. Plant Physiol 135:969–977PubMedPubMedCentralCrossRefGoogle Scholar
  104. Van Houtte H, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S et al (2013) Overexpression of the Trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in Abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 3:406–419PubMedCrossRefPubMedCentralGoogle Scholar
  106. Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn JE, Avonce N, Beeckman T, Van Dijck P (2012) Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis. Plant Physiol 160:884–896PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vauclare P, Bligny R, Gout E, De Meuron V, Widmer F (2010) Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study. Planta 231:1495–1504PubMedCrossRefPubMedCentralGoogle Scholar
  108. Veluthambi K, Mahadevan S, Maheshwari R (1981) Trehalose toxicity in Cuscuta reflexa: correlation with low trehalase activity. Plant Physiol 68:1369–1374PubMedPubMedCentralCrossRefGoogle Scholar
  109. Veluthambi K, Mahadevan S, Maheshwari R (1982a) Trehalose toxicity in Cuscuta reflexa: cell wall synthesis is inhibited upon trehalose feeding. Plant Physiol 70:686–688PubMedPubMedCentralCrossRefGoogle Scholar
  110. Veluthambi K, Mahadevan S, Maheshwari R (1982b) Trehalose toxicity in Cuscuta reflexa: sucrose content decreases in shoot tips upon trehalose feeding. Plant Physiol 69:1247–1251PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wannet WJB, Op den Camp HJM, Wisselink HW, van der Drift C, Van Griensven LJLD, Vogels GD (1998) Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta 1425:177–188PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zang B, Li H, Li W, Deng XW, Wang X (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522PubMedCrossRefGoogle Scholar
  116. Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa Trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol 48(4):453–459CrossRefGoogle Scholar
  117. Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhao Z, Zhang W, Stanley BA, Assmann SA (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3226PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Le Cong Huyen Bao Tran Phan
    • 1
    • 2
    • 3
  • Patrick Van Dijck
    • 1
    • 2
    Email author
  1. 1.VIB-KU Leuven Center for MicrobiologyHeverleeBelgium
  2. 2.Laboratory of Molecular Cell Biology, KU LeuvenLeuvenBelgium
  3. 3.Department of BiologyCollege of Natural Sciences, Can Tho UniversityCan ThoVietnam

Personalised recommendations