Advertisement

Biosynthesis and Degradation of Glycine Betaine and Its Potential to Control Plant Growth and Development

  • Elisa M. Valenzuela-SotoEmail author
  • Ciria G. Figueroa-Soto
Chapter

Abstract

Glycine betaine (N,N,N-trimethyl glycine, GB) plays an important role in the response of plants to abiotic stress, mainly hydric stress. The aim of this review is to gather information about biochemical processes in which glycine betaine is involved and their impact in plant growth and development. In plants, GB is synthesized by two choline oxidation steps: the first step is choline oxidation to betaine aldehyde (BA) catalyzed by choline monooxygenase, and the second step is BA oxidation to GB catalyzed by betaine aldehyde dehydrogenase which uses NAD(P)+ as coenzyme. In plants, GB synthesis takes place in chloroplast, peroxisome, and cytoplasm. There is scarce information about GB degradation routes in plants. The role of GB as osmolyte is well known, but only until recently, the participation of GB in several metabolic processes including regulation of gene expression, regulation of the concentration and activity of enzymes, and proper protein folding and association has been studied. GB plays a role in growth and development because it increases photosynthetic capacity and protects the thylakoid membrane and increases antioxidant enzymes activity and concentration. GB synthesis provokes changes in ethylene synthesis and increases expression of auxin responsive IAA gene levels. The modulation mechanisms mediated by GB are described in this work.

Keywords

Betaine aldehyde dehydrogenase Choline monooxygenase Glycine betaine 

References

  1. Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in tibetan wild and cultivated barleys. PLoS One 8(10):e77869PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Alie JA, Klimov VV, Murata N, Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. Photochem Photobiol 34:149–157CrossRefGoogle Scholar
  3. Allakhverdiev YM, Mamedov MD, Ferimazova N, Papageorgiou GC, Gasanov RA (1999) Glycinebetaine stabilizes photosystem 1 and photosystem 2 electron transport in spinach thylakoid membranes against heat inactivation. Photosynthetica 37:423–432CrossRefGoogle Scholar
  4. Bhuiyan NH, Hamada A, Yamada N, Rai V, Hibino T, Takabe T (2007) Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. J Exp Bot 58(15):4203–4212PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bligny R, Foray M-F, Roby C, Douce R (1989) Transport and phosphorylation of choline in higher plant cells: phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 264:4888–4895PubMedGoogle Scholar
  6. Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol 68:439–449PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brauner F, Šebela M, Snégaroff J, Peč P, Meunier JC (2003) Pea seedling aminoaldehyde dehydrogenase: primary structure and active site residues. Plant Physiol Biochem 41(1):1–10CrossRefGoogle Scholar
  8. Carrillo-Campos J, Riveros-Rosas H, Rodríguez-Sotres R, Muñoz-Clares RA (2018) Bona fide choline monoxygenases evolved in Amaranthaceae plants from oxygenases of unknown function: evidence from phylogenetics, homology modeling and docking studies. PLoS One 13(9):e0204711PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13(9):499–505PubMedCrossRefGoogle Scholar
  10. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20PubMedPubMedCentralCrossRefGoogle Scholar
  11. Craig SAS (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549PubMedCrossRefGoogle Scholar
  12. Datko AH, Mudd SH (1988) Phosphatidylcholine synthesis. Plant Physiol 88(3):854–861PubMedPubMedCentralCrossRefGoogle Scholar
  13. Deminice R, da Silva RP, Lamarre SG, Kelly KB, Jacobs RL, Brosnan ME, Brosnan JT (2015) Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism. Amino Acids 47:839–846PubMedCrossRefGoogle Scholar
  14. Díaz-Sánchez AG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA (2012) Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. Plant Physiol 158(4):1570–1582PubMedPubMedCentralCrossRefGoogle Scholar
  15. Du Vigneaud V, Simmonds JP, Chandler, Cohn CM (1946) A further investigation of the role of betaine in transmethylation reactions in vivo. J Biol Chem 165(2):639–648PubMedGoogle Scholar
  16. Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7(5):e37344PubMedPubMedCentralCrossRefGoogle Scholar
  17. Finkelstein JD, Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 259(15):9508–9513PubMedGoogle Scholar
  18. Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30CrossRefGoogle Scholar
  19. Fujiwara T, Mitsuya S, Miyake H, Hattori T, Takabe T (2010) Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. Planta 232(1):133–143CrossRefGoogle Scholar
  20. Figueroa-Soto CG, Valenzuela-Soto EM (2001) Purification of a heterodimeric betaine aldehyde dehydrogenase from wild amaranth plants subjected to water deficit. Biochem Biophys Res Commun 285(4):1052–1058PubMedCrossRefGoogle Scholar
  21. Figueroa-Soto CG, Valenzuela-Soto EM (2018) Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 147:89–97PubMedCrossRefGoogle Scholar
  22. Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6(11):1746–1751PubMedPubMedCentralCrossRefGoogle Scholar
  23. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial CodA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294PubMedCrossRefGoogle Scholar
  24. Guha A, Sengupta D, Reddy AR (2010) Physiological optimality, allocation trade-offs and antioxidant protection linked to better leaf yield performance in drought exposed mulberry. J Sci Food Agric 90(15):2649–2659PubMedCrossRefGoogle Scholar
  25. Hanson AD, Rhodes D (1983) 14C-tracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves. Plant Physiol 71:692–700PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21(6):535–553CrossRefGoogle Scholar
  27. Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa) varieties. Biomed Res Int 2014:ID 757219Google Scholar
  28. Hattori T, Mitsuya S, Fujiwara T, Jagendorf AT, Takabe T (2009) Tissue specificity of glycinebetaine synthesis in barley. Plant Sci 176:112–118CrossRefGoogle Scholar
  29. Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk,) Vierh. Plant Mol Biol 45(3):353–363PubMedCrossRefGoogle Scholar
  30. Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277(44):41352–41360PubMedPubMedCentralCrossRefGoogle Scholar
  31. Holmström KO, Somersalo S, Mandal A, Palva ET, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(543):177–185PubMedCrossRefGoogle Scholar
  32. Hoque MA, Banu MN, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification system and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824CrossRefGoogle Scholar
  33. Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlin JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122(3):747–756PubMedPubMedCentralCrossRefGoogle Scholar
  34. Idriss AA, Hu Y, Sun Q, Jia L, Jia Y, Omer NA, Abobaker H, Zhao R (2017) Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation. Poult Sci 96:1715–1724PubMedGoogle Scholar
  35. Incharoensakdi A, Matsuda N, Hibino T, Meng YL, Ishikawa H, Hara A, Funaguma T, Takabe T, Takabe T (2000) Overproduction of spinach betaine aldehyde dehydrogenase in Escherichia coli. Structural and functional properties of wild-type mutants and E. coli enzymes. Eur J Biochem 267(24):7015–7023PubMedCrossRefPubMedCentralGoogle Scholar
  36. Incharoensakdi A, Waditee R (2000) Degradation of glycinebetaine by betaine-homocysteine methyltransferase in Aphanothece halophytica: effect of salt downshock and starvation. Curr Microbiol 41:227PubMedCrossRefGoogle Scholar
  37. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50(10):1223–1229PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315PubMedCrossRefPubMedCentralGoogle Scholar
  39. Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166(15):1587–1597CrossRefGoogle Scholar
  40. Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jin P, Zhang Y, Shan T, Huang Y, Xu J, Zheng Y (2015) Low-temperature conditioning alleviates chilling injury in loquat fruit and regulates glycine betaine content and energy status. J Agric Food Chem 63(14):3654–3659PubMedCrossRefGoogle Scholar
  42. Karabudak T, Bor M, Özdemir F, Türkan I (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 41(3):1401–1410PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in CodA-expressing transgenic indica rice is associated with upregulation of several stress responsive genes. Plant Biotechnol J 7:512–526PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS (2016) Transgenic poplar expressing CodA exhibits enhanced growth and abiotic stress tolerance. Plant Physiol Biochem 100:75–84PubMedCrossRefPubMedCentralGoogle Scholar
  45. Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26(1):125–134CrossRefGoogle Scholar
  46. Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74PubMedCrossRefGoogle Scholar
  47. Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23(1):107–114CrossRefGoogle Scholar
  48. Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activities of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227(6):1213–1219PubMedCrossRefGoogle Scholar
  49. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NP (2015) Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res 126(2–3):221–235PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lawson-Yuen A, Levy HL (2006) The use of betaine in the treatment of elevated homocysteine. Mol Genet Metab 88(3):201–207PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lever M, Slow S (2010) The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 43(9):732–744PubMedCrossRefPubMedCentralGoogle Scholar
  53. Li S, Li F, Wang J, Zhang W, Meng Q, Chen TH, Murata N, Yang X (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34(11):1931–1943PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS (2014) Overexpression of CodA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem 85:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ling MY, Wang YM, Zhang DA, Nii N (2001) Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res 11(3):187–193CrossRefGoogle Scholar
  56. Livingstone JR, Yoshida I, Tarui Y, Hirooka K, Yamamoto Y, Tsutui N, Hirasawa E (2002) Purification and properties of aminoaldehyde dehydrogenase from Avena sativa. J Plant Res 115(5):393–400PubMedCrossRefPubMedCentralGoogle Scholar
  57. Livingstone JR, Maruo T, Yoshida I, Tarui Y, Hirooka K, YamamotoY TN, Hirasawa E (2003) Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. J Plant Res 116(2):133–140PubMedPubMedCentralGoogle Scholar
  58. Luo D, Niu X, Wang Y, Zheng W, Chang L, Wang Q, Wei X, Yu G, Lu BR, Liu Y (2007) Functional defect at the rice choline monooxygenase locus from an unusual post-transcriptional processing is associated with the sequence elements of short-direct repeats. New Phytol 175(3):439–447PubMedCrossRefPubMedCentralGoogle Scholar
  59. Luo D, Niu X, Yu J, Yan J, Gou X, Lu BR, Liu Y (2012) Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L ssp. Japonica). Plant Cell Rep 31:1625–1635PubMedCrossRefPubMedCentralGoogle Scholar
  60. Makela P, Karkkainen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475CrossRefGoogle Scholar
  61. Manaf HH (2016) Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Ann Agric Sci 61(1):41–48CrossRefGoogle Scholar
  62. McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD (2000a) Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol 123(1):371–380PubMedPubMedCentralCrossRefGoogle Scholar
  63. McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD (2000b) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol 124(1):153–162PubMedPubMedCentralCrossRefGoogle Scholar
  64. Meng YL, Wang YM, Zhang DB, Nii N (2001) Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res 11(3):187–193PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mitsuya S, Kuwahara J, Ozaki K, Saeki E, Fujiwara T, Takabe T (2011) Isolation and characterization of a novel peroxisomal choline monooxygenase in Barley. Planta 234(6):1215–1226CrossRefGoogle Scholar
  66. Mudd SH, Datko AH (1989a) Synthesis of methylated ethanolamine moieties. Plant Physiol 90(1):306–310PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mudd SH, Datko AH (1989b) Synthesis of methylated ethanolamine moieties. Regulation by choline in Lemna. Plant Physiol 90(1):296–305PubMedPubMedCentralCrossRefGoogle Scholar
  68. Muñoz-Clares RA, Valenzuela-Soto EM (2008) Betaine aldehyde dehydrogenases: evolution, physiological functions, mechanism, kinetics, regulation, structure, and stability. In: Advances in protein physical chemistry. Research Signpost, Kerala, pp 279–302Google Scholar
  69. Muñoz-Clares RA, Riveros-Rosas H, Garza-Ramos G, Gonzales-Segura L, Mújica-Jiménez C, Julián-Sanchez A (2014) Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALD10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine. BMC Plant Biol 14:149PubMedPubMedCentralCrossRefGoogle Scholar
  70. Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189PubMedCrossRefPubMedCentralGoogle Scholar
  71. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochem Biophys Acta 1767(6):414–421PubMedPubMedCentralGoogle Scholar
  72. Nakamura T, Ishitani M, Harinasut P, Nomura M, Takabe T, Takabe T (1996) Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants. Plant Cell Physiol 37(6):873–877CrossRefGoogle Scholar
  73. Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J 11(5):1115–1120PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol 42(10):1088–1092PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201PubMedCrossRefPubMedCentralGoogle Scholar
  76. Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson A (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nuccio ML, Ziemak MJ, Henry SA, Weretilnyk EA, Hanson AD (2000) cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme. J Biol Chem 275:14095–11410PubMedCrossRefPubMedCentralGoogle Scholar
  78. Oishi H, Ebina M (2005) Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. J Plant Physiol 162(10):1077–1086PubMedCrossRefPubMedCentralGoogle Scholar
  79. Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141(2):758–765PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ogbaga CC, Stepien P, Johnson GN (2014) Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol Plant 152:389–401PubMedCrossRefGoogle Scholar
  81. Olthof MR, Verhoef P (2005) Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Curr Drug Metab 6(1):15–22PubMedCrossRefGoogle Scholar
  82. Pajares MA, Pérez-Sala D (2006) Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism? Cell Mol Life Sci 63(23):2792–2803PubMedCrossRefGoogle Scholar
  83. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 25:243–252CrossRefGoogle Scholar
  84. Park EJ, Jeknic Z, Chen TH, Murata N (2007) The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J 5(3):422–430PubMedCrossRefGoogle Scholar
  85. Paul MJ, Primavesi LF, Jhurreea D, Zhang YH (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441PubMedCrossRefGoogle Scholar
  86. Peel GJ, Mickelbart MV, Rhodes D (2010) Choline metabolism in glycinebetaine accumulating and non-accumulating near-isogenic lines of Zea mays and Sorghum bicolor. Phytochemistry 71(4):404–414PubMedCrossRefGoogle Scholar
  87. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486PubMedCrossRefGoogle Scholar
  88. Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94(7):3454–3458PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ravanel S, Gakière B, Job DR (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95(13):7805–7812PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann Rev Plant Biol 44:357–384CrossRefGoogle Scholar
  91. Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116(2):859–865PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9(1):69PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycine betaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125(1):180–188PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171CrossRefGoogle Scholar
  95. Scheibler C (1869) Ueber das betain, eine im Safte der Zuckerrüben (Beta vulgaris) vorkommende Pflanzenbase. Ber Dtsch Chem Ges 2:292–295CrossRefGoogle Scholar
  96. Šebela M, Brauner F, Radová A, Jacobsen S, Havliš J, Galuszka P, Peč P (2000) Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochem Biophys Acta 1480(1–2):329–341PubMedGoogle Scholar
  97. Shirasawa K, Takabe T, Takabe T, Kishitani C (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation on their tolerance to abiotic stress. Ann Bot 98(3):565–571PubMedPubMedCentralCrossRefGoogle Scholar
  98. Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: potential metabolic measure of drought resistance. Nat New Biol 236:188–190PubMedCrossRefGoogle Scholar
  99. Smith LT, Pocard JA, Bernard T, Le Rudulier D (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170(7):3142–3149PubMedPubMedCentralCrossRefGoogle Scholar
  100. Summers PS, Weretilnyk EA (1993) Choline synthesis in spinach in relation to salt stress. Plant Physiol 103:1269–1273PubMedPubMedCentralCrossRefGoogle Scholar
  101. Song Z, Deaciuc I, Zhou Z, Song M, Chen T, Hill D, McClain CJ (2007) Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 293(4):G894–G902PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143:5–22PubMedCrossRefGoogle Scholar
  103. Stewart GR, Lee JA (1974) Role of proline accumulation in halophytes. Planta 120(3):279–289PubMedCrossRefGoogle Scholar
  104. Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen TH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36(2):165–176PubMedCrossRefGoogle Scholar
  105. Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L. Plant Cell Physiol 46(3):505–513PubMedCrossRefGoogle Scholar
  106. Takabe T, Rai V, Hibino T (2006) Metabolic engineering of glycinebetaine. In: Abiotic stress tolerance in plants. Springer, Dordrecht, pp 137–151CrossRefGoogle Scholar
  107. Tiang F, Wang W, Liang C, Wang X, Wang G, Wang W (2017) Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. Crop J 5(1):73–82CrossRefGoogle Scholar
  108. Trossat C, Rathinasabapathi B, Hanson AD (1997) Transgenically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-Aminoaldehydes. Plant Physiol 113(4):1457–1461PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15CrossRefGoogle Scholar
  110. Valenzuela-Soto EM, Muñoz-Clares RA (1994) Purification and properties of betaine aldehyde dehydrogenase extracted from detached leaves of Amaranthus hypochondriacus L. subjected to water deficit. J Plant Physiol 143(2):145–152CrossRefGoogle Scholar
  111. Vojtechová M, Rodríguez-Sotres R, Valenzuela-Soto EM, Muñoz-Clares RA (1997) Substrate inhibition by betaine dehydrogenase from leaves of Amaranthus hypochondriacus L. Biochim Biophys Acta 1341:49–5700PubMedCrossRefPubMedCentralGoogle Scholar
  112. Waditee R, Incharoensakdi A (2001) Purification and kinetic properties of betaine-homocysteine methyltransferase from Aphanothece halophytica. Curr Microbiol 43(2):107–111PubMedCrossRefPubMedCentralGoogle Scholar
  113. Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzukim S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102(5):1318–1323PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14(3):157–165PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang LW, Showalter AM (2004) Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. Physiol Plant 120:405–412PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41CrossRefGoogle Scholar
  117. Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y (2019) Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83CrossRefGoogle Scholar
  119. Weigel P, Weretilnyk EA, Hanson AD (1986) Betaine aldehyde oxidation by spinach chloroplast. Plant Physiol 82(3):753–759PubMedPubMedCentralCrossRefGoogle Scholar
  120. Weretilnyk EA, Hanson AD (1989) Betaine aldehyde dehydrogenase from spinach leaves: purification in vitro translation of the mRNA, and regulation by salinity. Arch Biochem Biophys 271(1):56–63PubMedCrossRefGoogle Scholar
  121. Weretilnyk A, Hanson AD (1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci 87:2745–2749PubMedCrossRefGoogle Scholar
  122. Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46(1):21–28PubMedCrossRefGoogle Scholar
  123. Xu Z, Sun M, Jiang X, Sun H, Dang X, Cong H, Qiao F (2018) Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci 9:1469PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T (2009) Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet – importance of long-distance translocation of betaine under normal and salt-stressed conditions. J Plant Physiol 166(18):2058–2070PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yancey PH, Clark ME, Hand C, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222CrossRefGoogle Scholar
  126. Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138(4):2299–2309PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73–86PubMedCrossRefGoogle Scholar
  128. Yao W, Xu T, Farooq SY, Jin P, Zheng Y (2018) Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biol Technol 144:20–28CrossRefGoogle Scholar
  129. Zhao X-X, Ma Q-Q, Liang C, Fang Y, Wang YQ, Wang W (2007) Effect of glycine betaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plant 51:584–588CrossRefGoogle Scholar
  130. Zhang Y, Yin H, Li D, Zhu W, Li Q (2008) Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep 27(3):585–592PubMedCrossRefGoogle Scholar
  131. Zhang W, Wang LW, Wang LK, Li X, Zhang H, Luo LP, Song JC, Gong ZJ (2013) Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig Dis Sci 58(1):3198–31206PubMedCrossRefPubMedCentralGoogle Scholar
  132. Zhang Y, Jin P, Huang Y, Shan T, Wang L, Li Y, Zheng Y (2016) Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biol Technol 118:141–147CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elisa M. Valenzuela-Soto
    • 1
    Email author
  • Ciria G. Figueroa-Soto
    • 1
  1. 1.Centro de Investigación en Alimentación y Desarrollo A.CHermosilloMéxico

Personalised recommendations