Differential and Integral Inequalities pp 459-479 | Cite as
Some New Hermite–Hadamard Type Integral Inequalities for Twice Differentiable Mappings and Their Applications
Chapter
First Online:
Abstract
The authors discover a general fractional integral identity regarding Hermite–Hadamard type inequality for twice differentiable functions. By using this integral equation, the authors derive some new estimates difference between the left and middle part in Hermite–Hadamard type integral inequality associated with twice differentiable generalized relative semi-m-(r;h1, h2)-preinvex mappings defined on m-invex set. It is pointed out that some new special cases can be deduced from main results. At the end, some applications to special means for different positive real numbers are provided as well.
References
- 1.S.M. Aslani, M.R. Delavar, S.M. Vaezpour, Inequalities of Fejér type related to generalized convex functions with applications. Int. J. Anal. Appl. 16(1), 38–49 (2018)zbMATHGoogle Scholar
- 2.F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals. Ital. J. Pure Appl. Math. 33, 299–306 (2014)MathSciNetzbMATHGoogle Scholar
- 3.Y.-M. Chu, G.D. Wang, X.H. Zhang, Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010)MathSciNetzbMATHGoogle Scholar
- 4.Y.-M. Chu, M.A. Khan, T.U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(5), 4305–4316 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Y.-M. Chu, M.A. Khan, T. Ali, S.S. Dragomir, Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017(93), 12 (2017)Google Scholar
- 6.Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 1(1), 51–58 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.M.R. Delavar, M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities. SpringerPlus 5, 1661 (2016)CrossRefGoogle Scholar
- 8.M.R. Delavar, S.S. Dragomir, On η-convexity. Math. Inequal. Appl. 20, 203–216 (2017)MathSciNetzbMATHGoogle Scholar
- 9.S.S. Dragomir, J. Pečarić, L.E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21, 335–341 (1995)MathSciNetzbMATHGoogle Scholar
- 10.T.S. Du, J.G. Liao, Y.J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions. J. Nonlinear Sci. Appl. 9, 3112–3126 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.G. Farid, A.U. Rehman, Generalizations of some integral inequalities for fractional integrals. Ann. Math. Sil. 31, 14 (2017)Google Scholar
- 12.G. Farid, A. Javed, A.U. Rehman, On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum 22, 17–28 (2017)MathSciNetzbMATHGoogle Scholar
- 13.C. Fulga, V. Preda, Nonlinear programming with φ-preinvex and local φ-preinvex functions. Eur. J. Oper. Res. 192, 737–743 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.M.E. Gordji, S.S. Dragomir, M.R. Delavar, An inequality related to η-convex functions (II). Int. J. Nonlinear Anal. Appl. 6(2), 26–32 (2016)Google Scholar
- 15.M.E. Gordji, M.R. Delavar, M. De La Sen, On φ-convex functions. J. Math. Inequal. Wiss. 10(1), 173–183 (2016)zbMATHCrossRefGoogle Scholar
- 16.A. Iqbal, M.A. Khan, S. Ullah, Y.-M Chu, A. Kashuri, Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications. AIP Adv. 8(7), 18 (2018)CrossRefGoogle Scholar
- 17.A. Kashuri, R. Liko, On Hermite-Hadamard type inequalities for generalized (s, m, φ)-preinvex functions via k-fractional integrals. Adv. Inequal. Appl. 6, 1–12 (2017)zbMATHGoogle Scholar
- 18.A. Kashuri, R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MT m-preinvex functions. Proyecciones 36(1), 45–80 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for generalized (r; s, m, φ)-preinvex functions. Eur. J. Pure Appl. Math. 10(3), 495–505 (2017)MathSciNetzbMATHGoogle Scholar
- 20.A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized (s, m, φ)-preinvex functions. Konuralp J. Math. 5(2), 228–238 (2017)MathSciNetzbMATHGoogle Scholar
- 21.A. Kashuri, R. Liko, Hermite-Hadamard type inequalities for generalized (s, m, φ)-preinvex functions via k-fractional integrals. Tbil. Math. J. 10(4), 73–82 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for MT (m,φ)-preinvex functions. Stud. Univ. Babeş-Bolyai Math. 62(4), 439–450 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized beta-preinvex functions. J. Fract. Calc. Appl. 9(1), 241–252 (2018)MathSciNetzbMATHGoogle Scholar
- 24.A. Kashuri, R. Liko, Some different type integral inequalities pertaining generalized relative semi-m-(r; h 1, h 2)-preinvex mappings and their applications. Electron. J. Math. Anal. Appl. 7(1), 351–373 (2019)zbMATHGoogle Scholar
- 25.M.A. Khan, Y. Khurshid, T. Ali, N. Rehman, Inequalities for three times differentiable functions. J. Math. Punjab Univ. 48(2), 35–48 (2016)MathSciNetzbMATHGoogle Scholar
- 26.M.A. Khan, T. Ali, S.S. Dragomir, M.Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. Real Acad. Cienc. Exact. Fís. Natur. A. Mat. (2017). https://doi.org/10.1007/s13398-017-0408-5 zbMATHGoogle Scholar
- 27.M.A. Khan, Y.-M. Chu, T.U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.M.A. Khan, Y. Khurshid, T. Ali, Hermite-Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comenian. 79(1), 153–164 (2017)MathSciNetzbMATHGoogle Scholar
- 29.M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals. J. Funct. Spaces 2018, 9 pp. (2018). Article ID 6928130Google Scholar
- 30.M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for MT (r;g,m,φ)-preinvex functions. J. Comput. Anal. Appl. 26(8), 1487–1503 (2019)Google Scholar
- 31.W. Liu, W. Wen, J. Park, Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Math. Notes 16(1), 249–256 (2015)MathSciNetCrossRefGoogle Scholar
- 32.W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 9, 766–777 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.C. Luo, T.S. Du, M.A. Khan, A. Kashuri, Y. Shen, Some k-fractional integrals inequalities through generalized λ ϕm-MT-preinvexity. J. Comput. Anal. Appl. 27(4), 690–705 (2019)Google Scholar
- 34.M. Matłoka, Inequalities for h-preinvex functions. Appl. Math. Comput. 234, 52–57 (2014)MathSciNetzbMATHGoogle Scholar
- 35.S. Mubeen, G.M. Habibullah, k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 7, 89–94 (2012)Google Scholar
- 36.M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2, 126–131 (2007)MathSciNetzbMATHGoogle Scholar
- 37.M.A. Noor, K.I. Noor, M.U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova–Levin preinvex functions. J. Adv. Math. Stud. 7(2), 12–19 (2014)MathSciNetzbMATHGoogle Scholar
- 38.O. Omotoyinbo, A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions. Int. J. Sci. Innov. Technol. 1(1), 1–12 (2014)Google Scholar
- 39.C. Peng, C. Zhou, T.S. Du, Riemann-Liouville fractional Simpson’s inequalities through generalized (m, h 1, h 2)-preinvexity. Ital. J. Pure Appl. Math. 38, 345–367 (2017)MathSciNetzbMATHGoogle Scholar
- 40.R. Pini, Invexity and generalized convexity. Optimization 22, 513–525 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.E. Set, Some new generalized Hermite-Hadamard type inequalities for twice differentiable functions (2017). https://www.researchgate.net/publication/327601181 zbMATHGoogle Scholar
- 42.E. Set, S.S. Karataş, M.A. Khan, Hermite-Hadamard type inequalities obtained via fractional integral for differentiable m-convex and (α, m)-convex functions. Int. J. Anal. 2016, 8 pp. (2016). Article ID 4765691Google Scholar
- 43.E. Set, A. Gözpinar, J. Choi, Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals. Far East J. Math. Sci. 101(4), 873–891 (2017)zbMATHGoogle Scholar
- 44.E. Set, M.Z. Sarikaya, A. Gözpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities. Creat. Math. Inform. 26(2), 221–229 (2017)MathSciNetzbMATHGoogle Scholar
- 45.H.N. Shi, Two Schur-convex functions related to Hadamard-type integral inequalities. Publ. Math. Debr. 78(2), 393–403 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.M. Tunç, E. Göv, Ü. Şanal, On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 30(5), 679–691 (2015)MathSciNetzbMATHGoogle Scholar
- 47.S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326(1), 303–311 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Y. Wang, S.H. Wang, F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Univ. Ser. Math. Inform. 28(2), 151–159 (2013)MathSciNetzbMATHGoogle Scholar
- 49.H. Wang, T.S. Du, Y. Zhang, k-fractional integral trapezium-like inequalities through (h, m)-convex and (α, m)-convex mappings. J. Inequal. Appl. 2017(311), 20 pp. (2017)Google Scholar
- 50.T. Weir, B. Mond, Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 136, 29–38 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.X.M. Zhang, Y.-M. Chu, X.H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, 11 pp. (2010). Article ID 507560Google Scholar
- 52.Y. Zhang, T.S. Du, H. Wang, Y.J. Shen, A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals. J. Inequal. Appl. 2018(49), 30 pp. (2018)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019