Advertisement

Convexity Variants and Fejer Inequalities with General Weight

  • Shoshana AbramovichEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 151)

Abstract

Some recent results related to convexity, superquadracity and Fejer type inequalities, in particular with generalized weight functions are discussed in this presentation.

References

  1. 1.
    S. Abramovich, Jensen, Hölder, Minkowski, Jensen-Steffensen and Slater-Pečarić inequalities derived through N-quasiconvexity. Math. Inequal. Appl. 19(4), 1203–1226 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Abramovich, Extended normalized Jensen functional, related to convexity, 1-quasiconvexity and superquadracity. J. Math. Inequal. 12(3), 753–764 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Abramovich, S.S. Dragomir, Normalized Jensen Functional, Superquadracity and Related Inequalities. International Series of Numerical Mathematics, vol. 157 (Birkhäuser, Basel, 2008), pp. 217–228Google Scholar
  4. 4.
    S. Abramovich, L.-E. Persson, Some new estimates of the ‘Jensen gap’. J. Inequal. Appl. 2016, 39, 9 pp. (2016)Google Scholar
  5. 5.
    S. Abramovich, L.-E. Persson, Fejer and Hermite-Hadamard inequalities for N-quasiconvex functions. Math. Notes 102(5), 644–656 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. Abramovich, L.-E. Persson, Extensions and refinements of Fejer and Hermite-Hadamard inequalities. Math. Inequal. Appl. 21(3), 759–772 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95)(1–2), 3–14 (2004)Google Scholar
  8. 8.
    S. Abramovich, J. Barić, J. Pečarić, Fejer and Hermite-Hadamard type inequalities for superquadratic functions. J. Math. Anal. Appl. 344(2), 1048–1056 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Barić, M. Matić, J. Pečarić, On the bounds for the normalized Jensen functional and Jensen-Steffensen inequality. Math. Inequal. Appl. 12(2), 413–432 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    S.S. Dragomir, Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74, 471–478 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Armenian J. Math. 8, 323–341 (2016)Google Scholar
  12. 12.
    S. Dragomir, J. Pecaric, L.-E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21(3), 337–341 (1995)MathSciNetzbMATHGoogle Scholar
  13. 13.
    M.-I. Ho, Fejer inequalities of Wright-convex functions. J. Inequal. Pure Appl. Math. 8(1), article 9 (2007)Google Scholar
  14. 14.
    R. Jaksić, L. Kvesić, J. Pečarić, On weighted generalization of the Hermite-Hadamard inequality. Math. Inequal. Appl. 18(2), 649–665 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    C.P. Niculescu, L.-E. Persson, Old and new on the Hermite-Hadamard inequality. Real Anal. Exchange 29(2), 663-685 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    C.P. Niculescu, L.-E. Persson, Convex Functions and Their Applications - A Contemporary Approach. Can. Math. Series Books in Mathematics, 2nd edn. (Springer, Berlin, 2018)Google Scholar
  17. 17.
    J. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications (Academic Press, New York, 1992)zbMATHGoogle Scholar
  18. 18.
    M. Sababheh, Improved Jensen’s inequality. Math. Inequal. Appl. 20(2), 389–403 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    S. Varosanec, On h-convexity. J. Math. Anal Appl. 326(1), 303–311 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael

Personalised recommendations