Advertisement

The Ecology of Breastfeeding and Mother-Infant Immune Functions

  • Elizabeth M. MillerEmail author
Chapter
Part of the Bioarchaeology and Social Theory book series (BST)

Abstract

Science and society are increasingly aware of the relationship between the environment and the immune system, and how this relationship can impact chronic and infectious health outcomes. A growing body of evidence points to early infancy as a critical window for immunological development. During this time, infants are bombarded with information about the world around them: friendly and not-so-friendly microorganisms from complementary foods, mothers’ milk, and exposure to new people and places. Contact with local exposures is hypothesised to explain differences in immunological profiles between populations, a concept known as ecological immunity. The evolved flexibility in human immune responses is an adaptive mechanism that protects infants from the diseases that are present in their unique environment while priming them to coexist with benign microbes. The mother-infant immune nexus, linked by shared breastfeeding and shared experiences, forms the basis for this early ecology. This chapter reviews the shared mother-infant immune system, focusing on ecological and developmental variation in the immune systems of mothers, infants, and milk. Cytokines, immunoglobulins, and other immunologically active proteins in milk will be discussed, as well as our growing understanding of the microbiome and how it is integrated into the body via breastfeeding and the immune system. This chapter highlights the importance of embodied immune systems, the implications of ecological difference in exposure for understanding immune-mediated chronic health problems, and a new model of shared maternal-infant life histories that recognises the shared maternal-infant immune system.

Keywords

Ecological immunity Maternal effect Intergenerational inheritance Developmental origins of adult health and disease Life history theory Passive immunity 

References

  1. Adair, L. S., & Guilkey, D. K. (1997). Age-specific determinants of stunting in Filipino children. J Nutr, 127(2), 314–320.CrossRefGoogle Scholar
  2. Amoudruz, P., Holmlund, U., Schollin, J., Sverremark-Ekström, E., & Montgomery, S. M. (2009). Maternal country of birth and previous pregnancies are associated with breast milk characteristics. Pediatr Allergy Immunol, 20(1), 19–29.CrossRefGoogle Scholar
  3. Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. P., & Szekeres-Bartho, J. (2007). Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol, 58(3), 268–279.CrossRefGoogle Scholar
  4. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920.CrossRefGoogle Scholar
  5. Barker, D. (2004). Developmental origins of adult health and disease. J Epidemiol Community Health, 58(2), 114.CrossRefGoogle Scholar
  6. Bernstein, R. M., & Dominy, N. J. (2013). Mount pinatubo, inflammatory cytokines, and the immunological ecology of aeta hunter-gatherers. Hum Biol, 85(1–3), 231–250.CrossRefGoogle Scholar
  7. Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., De Onis, M., Ezzati, M., Mathers, C., & Rivera, J. (2008). Maternal and child undernutrition: global and regional exposures and health consequences. Lancet, 371(9608), 243–260.CrossRefGoogle Scholar
  8. Böttcher, M. F., Abrahamsson, T. R., Fredriksson, M., Jakobsson, T., & Björkstén, B. (2008). Low breast milk TGF-β2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr Allergy Immunol, 19(6), 497–504.CrossRefGoogle Scholar
  9. Brambell, F. W. R. (1970). The transmission of passive immunity from mother to young. The transmission of passive immunity from mother to young. Amsterdam: North-Holland Publishing Co..Google Scholar
  10. Brandtzaeg, P. (2003). Mucosal immunity: integration between mother and the breast-fed infant. Vaccine, 21(24), 3382–3388.CrossRefGoogle Scholar
  11. Breakey, A. A., Hinde, K., Valeggia, C. R., Sinofsky, A., & Ellison, P. T. (2015). Illness in breastfeeding infants relates to concentration of lactoferrin and secretory Immunoglobulin A in mother’s milk. Evol Med Publ Health, 2015(1), 21–31.CrossRefGoogle Scholar
  12. Brock, J. H. (1980). Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child, 55(6), 417–421.CrossRefGoogle Scholar
  13. Buescher, E. S., & Malinowska, I. (1996). Soluble receptors and cytokine antagonists in human milk. Pediatr Res, 40(6), 839–844.CrossRefGoogle Scholar
  14. Cabrera-Rubio, R., Collado, M. C., Laitinen, K., Salminen, S., Isolauri, E., & Mira, A. (2012). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr, 96(3), 544–551.CrossRefGoogle Scholar
  15. Cogen, A., Nizet, V., & Gallo, R. (2008). Skin microbiota: a source of disease or defence? Br J Dermatol, 158(3), 442–455.CrossRefGoogle Scholar
  16. Cruz, J. R., Carlsson, B., Garcia, B., Gebremedhin, M., Hofvander, Y., Urrutia, J. J., & Hanson, L. A. (1982). Studies on human-milk III. Secretory Iga quantity and antibody-levels against Escherichia-Coli in colostrum and milk from underprivileged and privileged mothers. Pediatr Res, 16(4), 272–276.CrossRefGoogle Scholar
  17. de Moraes-Pinto, M. I., Verhoeff, F., Chimsuku, L., Milligan, P. J., Wesumperuma, L., Broadhead, R. L., Brabin, B. J., Johnson, P. M., & Hart, C. A. (1998). Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch Dis Child Fetal Neonatal Ed, 79(3), F202–F205.CrossRefGoogle Scholar
  18. Dethlefsen, L., McFall-Ngai, M., & Relman, D. A. (2007). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 449(7164), 811–818.CrossRefGoogle Scholar
  19. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci, 107(26), 11971–11975.CrossRefGoogle Scholar
  20. Ehrlich, P. (1892). Ueber immunität durch vererbung und säugung. Z Hyg Infekt, 12(1), 183–203.Google Scholar
  21. Espo, M., Kulmala, T., Maleta, K., Cullinan, T., Salin, M. L., & Ashorn, P. (2002). Determinants of linear growth and predictors of severe stunting during infancy in rural Malawi. Acta Paediatr, 91(12), 1364–1370.CrossRefGoogle Scholar
  22. Fessler, D. M. T., & Abrams, E. T. (2004). Infant mouthing behavior: the immunocalibration hypothesis. Med Hypotheses, 63(6), 925–932.CrossRefGoogle Scholar
  23. Field, C. J. (2005). The immunological components of human milk and their effect on immune development in infants. J Nutr, 135(1), 1–4.CrossRefGoogle Scholar
  24. Fitzsimmons, S. P., Evans, M. K., Pearce, C. L., Sheridan, M. J., Wientzen, R., & Cole, M. F. (1994). Immunoglobulin A subclasses in infants’ saliva and in saliva and milk from their mothers. J Pediatr, 124(4), 566–573.CrossRefGoogle Scholar
  25. Gans, H., DeHovitz, R., Forghani, B., Beeler, J., Maldonado, Y., & Arvin, A. M. (2003). Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine, 21(24), 3398–3405.CrossRefGoogle Scholar
  26. Garofalo, R. (2010). Cytokines in human milk. J Pediatr, 156(2), S36–S40.CrossRefGoogle Scholar
  27. Gilbert, S. F. (2000). Developmental constraints. In S. F. Gilbert (Ed.), Developmental biology (6th ed., pp. 773–776). Sunderland: Sinauer Associates.Google Scholar
  28. Goldman, A. S. (1993). The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J, 12(8), 664–671.CrossRefGoogle Scholar
  29. Goldman, A. S., Garza, C., Nichols, B. L., & Goldblum, R. M. (1982). Immunologic factors in human milk during the first year of lactation. J Pediatr, 100(4), 563–567.CrossRefGoogle Scholar
  30. Goldman, A. S., Chheda, S., & Garofalo, R. (1998). Evolution of immunologic functions of the mammary gland and the postnatal development of immunity. Pediatr Res, 43(2), 155–162.CrossRefGoogle Scholar
  31. Gregory, R. L., Wallace, J. P., Gfell, L. E., Marks, J., & King, B. A. (1997). Effect of exercise on milk immunoglobulin A. Med Sci Sports Exerc, 29(12), 1596–1601.CrossRefGoogle Scholar
  32. Grindstaff, J. L. (2008). Maternal antibodies reduce costs of an immune response during development. J Exp Biol, 211(5), 654–660.  https://doi.org/10.1242/jeb.012344.CrossRefGoogle Scholar
  33. Grindstaff, J. L., Brodie, E. D., & Ketterson, E. D. (2003). Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc R Soc Lond Ser B Biol Sci, 270(1531), 2309–2319.CrossRefGoogle Scholar
  34. Hamosh, M. (2001). Bioactive factors in human milk. Pediatr Clin N Am, 48(1), 69–86.CrossRefGoogle Scholar
  35. Hanson, L. A. (1998). Breastfeeding provides passive and likely longlasting active immunity. Ann Allergy Asthma Immunol, 81(6), 523–537.CrossRefGoogle Scholar
  36. Hanson, L. A., Korotkova, M., Lundin, S., Haversen, L., Silfverdal, S. A., Mattsby-Baltzer, I., Strandvik, B., & Telemo, E. (2003). The transfer of immunity from mother to child. Ann N Y Acad Sci, 987, 199–206.CrossRefGoogle Scholar
  37. Harmsen, H. J., Wildeboer–Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G., & Welling, G. W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr, 30(1), 61–67.CrossRefGoogle Scholar
  38. Hennart, P. F., Brasseur, D. J., Delognedesnoeck, J. B., Dramaix, M. M., & Robyn, C. E. (1991). Lysozyme, lactoferrin, and secretory immunoglobulin-A content in breast-milk: Influence of duration of lactation, nutrition status, prolactin status, and parity of mother. Am J Clin Nutr, 53(1), 32–39.CrossRefGoogle Scholar
  39. Holmlund, U., Amoudruz, P., Johansson, M., Haileselassie, Y., Ongoiba, A., Kayentao, K., Traore, B., Doumbo, S., Schollin, J., & Doumbo, O. (2010). Maternal country of origin, breast milk characteristics and potential influences on immunity in offspring. Clin Exp Immunol, 162(3), 500–509.CrossRefGoogle Scholar
  40. Jackson, K. M., & Nazar, A. M. (2006). Breastfeeding, the immune response, and long-term health. J Am Osteop Assoc, 106(4), 203–207.Google Scholar
  41. Kikafunda, J. K., Walker, A. F., Collett, D., & Tumwine, J. K. (1998). Risk factors for early childhood malnutrition in Uganda. Pediatrics, 102(4), e45.CrossRefGoogle Scholar
  42. Klein Klouwenberg, P., & Bont, L. (2008). Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines. Clin Dev Immunol, 2008, 628963.CrossRefGoogle Scholar
  43. Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T., & Ley, R. E. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proceed Nat Acad Sci, 108(Supplement 1), 4578–4585.CrossRefGoogle Scholar
  44. Kramer, M. S., & Kakuma, R. (2012). Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev, 2012(8), CD003517.Google Scholar
  45. Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: Are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol, 17(1), 5–21.CrossRefGoogle Scholar
  46. Kuzawa, C. W., & Quinn, E. A. (2009). Developmental origins of adult function and health: evolutionary hypotheses. Ann Rev Anthropol, 38(1), 131–147.  https://doi.org/10.1146/annurev-anthro-091908-164350.CrossRefGoogle Scholar
  47. Kwak-Kim, J., Park, J. C., Ahn, H. K., Kim, J. W., & Gilman-Sachs, A. (2010). Review article: immunological modes of pregnancy loss. Am J Reprod Immunol, 63(6), 611–623.CrossRefGoogle Scholar
  48. Laydon, D. J., Bangham, C. R., & Asquith, B. (2015). Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philosop Transact Royal Soc B: Biol Sci, 370(1675), 20140291.CrossRefGoogle Scholar
  49. Lemke, H., & Lange, H. (1999). Is there a maternally induced immunological imprinting phase a la Konrad Lorenz. Scand J Immunol, 50(4), 348–354.CrossRefGoogle Scholar
  50. Li, L., Lee, H.-H., Bell, J. J., Gregg, R. K., Ellis, J. S., Gessner, A., & Zaghouani, H. (2004). IL-4 utilizes an alternative receptor to drive apoptosis of Th1 cells and skews neonatal immunity toward Th2. Immunity, 20(4), 429–440.CrossRefGoogle Scholar
  51. Lochmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos, 88(1), 87–98.CrossRefGoogle Scholar
  52. Lonnerdal, B. (1984). Iron and breast milk. In A. Steckel (Ed.), Iron nutrition in infancy and childhood (pp. 95–117). New York: Vevey/Raven Press.Google Scholar
  53. Mäntyjärvi, R., Hirvonen, T., & Toivanen, P. (1970). Maternal antibodies in human neonatal sera. Immunology, 18(3), 449.Google Scholar
  54. Martín, R., Heilig, G., Zoetendal, E., Smidt, H., & Rodríguez, J. (2007). Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol, 103(6), 2638–2644.CrossRefGoogle Scholar
  55. Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G., & de la Cochetiere, M. F. (2013). Development of intestinal microbiota in infants and its impact on health. Trends Microbiol, 21(4), 167–173.  https://doi.org/10.1016/j.tim.2012.12.001.CrossRefGoogle Scholar
  56. McDade, T. W. (2003). Life history theory and the immune system: Steps toward a human ecological immunology. Am J Phys Anthropol, 122(S37), 100–125.CrossRefGoogle Scholar
  57. McDade, T. W. (2005). The ecologies of human immune function. Annu Rev Anthropol, 34, 495–521.CrossRefGoogle Scholar
  58. McDade, T. W., & Worthman, C. M. (1998). The weanling’s dilemma reconsidered: a biocultural analysis of breastfeeding ecology. J Dev Behav Pediatr, 19(4), 286–299.CrossRefGoogle Scholar
  59. McDade, T. W., & Worthman, C. M. (1999). Evolutionary process and the ecology of human immune function. Am J Hum Biol, 11(6), 705–717.CrossRefGoogle Scholar
  60. McDade, T. W., Reyes-Garcia, V., Tanner, S., Huanca, T., & Leonard, W. R. (2008). Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. Am J Phys Anthropol, 136(4), 478–484.CrossRefGoogle Scholar
  61. Medawar, P. B. (1953). Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol, 7, 320–338.Google Scholar
  62. Miller, E. M. (2011). Breastfeeding and immunity in Ariaal mothers and infants. Ann Arbor: University of Michigan Press.Google Scholar
  63. Miller, E. M. (2018). Ecological immunity of human milk: Life history perspectives from the United States and Kenya. Am J Phys Anthropol, 167(2), 389–399.CrossRefGoogle Scholar
  64. Miller, E. M., & McConnell, D. S. (2012). Chronic undernutrition is associated with higher mucosal antibody levels among Ariaal infants of northern Kenya. Am J Phys Anthropol, 149(1), 136–141.  https://doi.org/10.1002/ajpa.22108.CrossRefGoogle Scholar
  65. Miller, E. M., & McConnell, D. S. (2015). Milk immunity and reproductive status among Ariaal women of northern Kenya. Ann Human Biol, 42(1), 76–83.  https://doi.org/10.3109/03014460.2014.941398.CrossRefGoogle Scholar
  66. Morell, A., Skvaril, F., Hitzig, W. H., & Barandun, S. (1972). IgG subclasses: development of serum concentrations in normal infants and children. J Pediatr, 80(6), 960–964.CrossRefGoogle Scholar
  67. Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. Am J Hum Biol, 17(5), 527–558.CrossRefGoogle Scholar
  68. Nathavitharana, K., Catty, D., & McNeish, A. (1994). IgA antibodies in human milk: epidemiological markers of previous infections? Arch Dis Child Fetal Neonatal Ed, 71(3), F192–F197.CrossRefGoogle Scholar
  69. Norcross, N. (1982). Secretion and composition of colostrum and milk. J Am Vet Med Assoc, 181(10), 1057–1060.Google Scholar
  70. Oddy, W. H. (2001). Breastfeeding protects against illness and infection in infants and children: a review of the evidence. Breastfeeding Rev J, 9(2), 11–18.Google Scholar
  71. Oddy, W. H., & Rosales, F. (2010). A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatr Allergy Immunol, 21(1-Part-I), 47–59.  https://doi.org/10.1111/j.1399-3038.2009.00913.x.CrossRefGoogle Scholar
  72. Okoko, B., Wesumperuma, H., Fern, J., Yamuah, L., & Hart, C. (2013). The transplacental transfer of IgG subclasses: influence of prematurity and low birthweight in the Gambian population. Ann Trop Paediatr: Int Child Health, 22(4), 325–332.CrossRefGoogle Scholar
  73. Pabst, H., & Spady, D. (1990). Effect of breast-feeding on antibody response to conjugate vaccine. Lancet, 336(8710), 269–270.CrossRefGoogle Scholar
  74. Pabst, H., Spady, D., Pilarski, L., Carson, M., Beeler, J., & Krezolek, M. (1997). Differential modulation of the immune response by breast-or formula-feeding of infants. Acta Paediatr, 86(12), 1291–1297.CrossRefGoogle Scholar
  75. Palmeira, P., Quinello, C., Silveira-Lessa, A. L., Zago, C. A., & Carneiro-Sampaio, M. (2011). IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol, 2012, 985646.Google Scholar
  76. Penttila, I. A. (2010). Milk-derived transforming growth factor-β and the infant immune response. J Pediatr, 156(2, Supplement), S21–S25.CrossRefGoogle Scholar
  77. Peroni, D. G., Pescollderungg, L., Piacentini, G. L., Rigotti, E., Maselli, M., Watschinger, K., Piazza, M., Pigozzi, R., & Boner, A. L. (2010). Immune regulatory cytokines in the milk of lactating women from farming and urban environments. Pediatr Allergy Immunol, 21(6), 977–982.CrossRefGoogle Scholar
  78. Prentice, A., Prentice, A. M., Cole, T. J., & Whitehead, R. G. (1983). Determinants of variations in breast milk protective factor concentrations of rural Gambian mothers. Arch Dis Child, 58(7), 518–522.CrossRefGoogle Scholar
  79. Prentice, A., Prentice, A. M., Cole, T. J., Paul, A. A., & Whitehead, R. G. (1984). Breast-milk antimicrobial factors of rural Gambian mothers. I Influence of stage of lactation and maternal plane of nutrition. Acta Paediatrica Scandinavica, 73(6), 796–802.CrossRefGoogle Scholar
  80. Ruiz-Palacios, G. M., Calva, J. J., Pickering, L. K., Lopez-Vidal, Y., Volkow, P., Pezzarossi, H., & West, M. S. (1990). Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J Pediatr, 116(5), 707–713.CrossRefGoogle Scholar
  81. Sheldon, B. C., & Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol, 11(8), 317–321.CrossRefGoogle Scholar
  82. Siegrist, C.-A. (2003). Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine, 21(24), 3406–3412.CrossRefGoogle Scholar
  83. Silverstein, A. M. (1996). History of immunology: Paul Ehrlich: the founding of pediatric immunology. Cell Immunol, 174(1), 1–6.CrossRefGoogle Scholar
  84. Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press.Google Scholar
  85. Thompson, A. L. (2012). Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol, 24(3), 350–360.  https://doi.org/10.1002/ajhb.22254.CrossRefGoogle Scholar
  86. Thompson, A. L., Monteagudo-Mera, A., Cadenas, M. B., Lampl, M. L., & Azcarate-Peril, M. (2015). Milk-and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol, 5, 3.CrossRefGoogle Scholar
  87. Tomicic, S., Johansson, G. I. T., Voor, T., Bjorksten, B., Bottcher, M. F., & Jenmalm, M. C. (2010). Breast milk cytokine and IgA composition differ in Estonian and Swedish mothers: Relationship to microbial pressure and infant allergy. Pediatr Res, 68(4), 330–334.CrossRefGoogle Scholar
  88. van den Berg, J. P., Westerbeek, E. A., Berbers, G. A., van Gageldonk, P. G., van der Klis, F. R., & van Elburg, R. M. (2010). Transplacental transport of IgG antibodies specific for pertussis, diphtheria, tetanus, haemophilus influenzae type b, and Neisseria meningitidis serogroup C is lower in preterm compared with term infants. Pediatr Infect Dis J, 29(9), 801–805.CrossRefGoogle Scholar
  89. Van Valen, L. (1973). A new evolutionary law. Evolut Theory, 1, 1–30.Google Scholar
  90. Victora, C. G., de Onis, M., Hallal, P. C., Blossner, M., & Shrimpton, R. (2010). Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics, 125(3), e473–e480. doi:peds.2009-1519.CrossRefGoogle Scholar
  91. Villamor, E., Mbise, R., Spiegelman, D., Hertzmark, E., Fataki, M., Peterson, K. E., Ndossi, G., & Fawzi, W. W. (2002). Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics, 109(1), e6.CrossRefGoogle Scholar
  92. Walterspiel, J. N., Morrow, A. L., Pickering, L. K., Ruiz-Palacios, G. M., & Guerrero, M. L. (1994). Secretory anti-Giardia lamblia antibodies in human milk: protective effect against diarrhea. Pediatrics, 93(1), 28–31.Google Scholar
  93. Wander, K., O’Connor, K., & Shell-Duncan, B. (2012). Expanding the hygiene hypothesis: Early exposure to infectious agents predicts delayed-type hypersensitivity to Candida among children in Kilimanjaro. PLoS One, 7(5), e37406.CrossRefGoogle Scholar
  94. Weaver, L. T., Arthur, H. M., Bunn, J. E., & Thomas, J. E. (1998). Human milk IgA concentrations during the first year of lactation. Arch Dis Child, 78(3), 235–239.CrossRefGoogle Scholar
  95. West, L. (2002). Defining critical windows in the development of the human immune system. Hum Exp Toxicol, 21(9–10), 499–505.CrossRefGoogle Scholar
  96. WHO Young Infants Study Group. (1999). Bacterial etiology of serious infections in young infants in developing countries: results of a multicenter study. Pediatr Infect Dis J, 18(10), S17–S22.Google Scholar
  97. Zaghouani, H., Hoeman, C. M., & Adkins, B. (2009). Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol, 30(12), 585–591.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of South FloridaTampaUSA

Personalised recommendations