Advertisement

Familial Hypercholesterolemia

  • Ashish Sarraju
  • Joshua W. KnowlesEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 7)

Abstract

Familial Hypercholesterolemia (FH) is one of the most common inherited lipid disorders, with recent studies estimating a prevalence as high as 1 in 200 people [1–3]. Inherited in an autosomal-dominant fashion, it is associated with lifelong, severe elevations in low-density lipoprotein-cholesterol (LDL-c) levels. Individuals with FH have a markedly elevated risk of premature ischemic heart disease, 5–20-fold higher than the general population [4–6]. Mutations in the genes for the LDL receptor (LDLR), apolipoprotein B-100 (APOB), as well as gain of function mutations in the proprotein convertase subtulisin/kexin type 9 protein (PCSK9) have all been associated with the pathogenesis of FH [6]. Appropriate management can dramatically improve the life expectancy of those with FH [6]; however, many patients experience delayed diagnosis and inadequate cholesterol lowering [1], underscoring the need for increased awareness, recognition, and timely treatment of this disorder in the general community.

References

  1. 1.
    deGoma EM, et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH registry. Circ Cardiovasc Genet. 2016;9(3):240–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Benn M, et al. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97(11):3956–64.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nordestgaard BG, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–90a.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Parizo J, Sarraju A, Knowles JW. Novel therapies for familial hypercholesterolemia. Curr Treat Options Cardiovasc Med. 2016;18(11):64.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ahmad ZS, et al. US physician practices for diagnosing familial hypercholesterolemia: data from the CASCADE-FH registry. J Clin Lipidol. 2016;10(5):1223–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gidding SS, et al. The agenda for familial hypercholesterolemia: a scientific statement From the American Heart Association. Circulation. 2015;132(22):2167–92.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Youngblom E, Pariani M, Knowles JW. Familial hypercholesterolemia. In: Pagon RA, et al., editors. GeneReviews(R). Seattle, WA: University of Washington; 2016.Google Scholar
  8. 8.
    Talmud PJ, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381(9874):1293–301.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Langsted A, et al. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(7):577–87.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nordestgaard BG, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4(4):214–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Expert Panel on Integrated Guidelines for Cardiovascular, H, et al. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.Google Scholar
  13. 13.
    US Preventive Services Task Force. Screening for lipid disorders in children and adolescents: US preventive services task force recommendation statement. JAMA. 2016;316(6):625–33.Google Scholar
  14. 14.
    Helfand M, Carson S. Screening for lipid disorders in adults: selective update of 2001 US preventive services task force review. Rockville (MD): Agency for Healthcare Research and Quality; 2008.Google Scholar
  15. 15.
    Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    De Castro-Orós I, Pocoví M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage, and mutations. Appl Clin Genet. 2010;3:53–64.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mabuchi H, et al. Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis. 2014;236(1):54–61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Usifo E, et al. Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann Hum Genet. 2012;76(5):387–401.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1(6):445–66.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koivisto UM, Hubbard AL, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell. 2001;105(5):575–85.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khera AV, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578–89.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Borén J, et al. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001;276(12):9214–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thomas ER, et al. Identification and biochemical analysis of a novel APOB mutation that causes autosomal dominant hypercholesterolemia. Mol Genet Genomic Med. 2013;1(3):155–61.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shen H, et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the old order Amish. Arch Intern Med. 2010;170(20):1850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arnold KS, et al. Isolation of allele-specific, receptor-binding-defective low density lipoproteins from familial defective apolipoprotein B-100 subjects. J Lipid Res. 1994;35(8):1469–76.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Soria LF, et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989;86(2):587–91.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Musunuru K, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363(23):2220–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Abifadel M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cohen JC, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ. 1991;303(6807):893–6.Google Scholar
  31. 31.
    Watts GF, et al. Integrated guidance on the care of familial hypercholesterolemia from the International FH Foundation. J Clin Lipidol. 2014;8(2):148–72.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis. 2012;223(2):262–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Williams RR, et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am J Cardiol. 1993;72(2):171–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Civeira F, I.P.o.M.o.F. Hypercholesterolemia. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis. 2004;173(1):55–68.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Foody JM. Familial hypercholesterolemia: an under-recognized but significant concern in cardiology practice. Clin Cardiol. 2014;37(2):119–25.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kindt I, Mata P, Knowles JW. The role of registries and genetic databases in familial hypercholesterolemia. Curr Opin Lipidol. 2017;28(2):152–60.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mata N, et al. Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART). Lipids Health Dis. 2011;10:94.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Perez de Isla L, et al. Coronary heart disease, peripheral arterial disease, and stroke in familial hypercholesterolaemia: insights from the SAFEHEART registry (Spanish familial hypercholesterolaemia cohort study). Arterioscler Thromb Vasc Biol. 2016;36(9):2004–10.CrossRefGoogle Scholar
  39. 39.
    Wiegman A, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015;36(36):2425–37.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Neil A, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29(21):2625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Versmissen J, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Knowles JW. Statins in familial hypercholesterolemia: translating evidence to action. J Am Coll Cardiol. 2016;68(3):261–4.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vuorio A, et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev. 2014;7:CD006401.Google Scholar
  44. 44.
    Kusters DM, et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312(10):1055–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cuchel M, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the consensus panel on familial hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Raal FJ, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124(20):2202–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Raal FJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cuchel M, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rader DJ, Kastelein JJ. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129(9):1022–32.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stein EA, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    McGowan MP, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7(11):e49006.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Maiorana A, et al. Preemptive liver transplantation in a child with familial hypercholesterolemia. Pediatr Transplant. 2011;15(2):E25–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Moyle M, Tate B. Homozygous familial hypercholesterolaemia presenting with cutaneous xanthomas: response to liver transplantation. Australas J Dermatol. 2004;45(4):226–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine and Cardiovascular InstituteFalk Cardiovascular Research Center, Stanford UniversityStanfordUSA

Personalised recommendations