Advertisement

Complex Genetics and the Etiology of Human Congenital Heart Disease

  • Richard W. Kim
  • Peter J. GruberEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 7)

Abstract

The genetic architecture of human congenital heart disease (CHD) is as complex as the phenotypes it produces. The objective of this chapter is to review recent findings on the genetic basis and inheritance patterns of CHD. Rather than provide lists of identified genes, instead we offer a conceptual framework to understand the relationship between genetic variation and CHD. We review recent studies utilizing contemporary techniques, some of which may be difficult to interpret for the nonspecialist. This overview aims to educate students and clinicians, providing a background to understand pertinent genetic literature as it relates to human CHD.

References

  1. 1.
    International Human Genome Sequencing, C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.CrossRefGoogle Scholar
  2. 2.
    Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Venter JC, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.CrossRefGoogle Scholar
  4. 4.
    An Y, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. BMC Med Genet. 2016;9:2.Google Scholar
  5. 5.
    Seidman JG, Seidman C. Transcription factor haploinsufficiency: when half a loaf is not enough. J Clin Invest. 2002;109(4):451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yuan S, Zaidi S, Brueckner M. Congenital heart disease: emerging themes linking genetics and development. Curr Opin Genet Dev. 2013;23(3):352–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jin SC, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–601.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zaidi S, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bentham J, Bhattacharya S. Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci. 2008;1123:10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fahed AC, et al. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112(4):707–20.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wild PS, et al. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest. 2017;127(5):1798–812.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet. 2010;3(6):567–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chowdhury S, et al. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One. 2011;6(1):e16506.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vallaster M, Vallaster CD, Wu SM. Epigenetic mechanisms in cardiac development and disease. Acta Biochim Biophys Sin Shanghai. 2012;44(1):92–102.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Genomes Project C, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRefGoogle Scholar
  16. 16.
    Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    International HapMap, C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.CrossRefGoogle Scholar
  18. 18.
    Caputo S, et al. Familial recurrence of congenital heart disease in patients with ostium secundum atrial septal defect. Eur Heart J. 2005;26(20):2179–84.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Satoda M, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25(1):42–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Spencer CC, et al. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cordell HJ, et al. Genome-wide association study identifies loci on 12q24 and 13q32 associated with tetralogy of Fallot. Hum Mol Genet. 2013;22(7):1473–81.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goodship JA, et al. A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu Z, et al. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet. 2013;45(7):818–21.CrossRefGoogle Scholar
  24. 24.
    Stevens KN, et al. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease. PLoS One. 2010;5(5):e10855.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Winston JB, et al. Heterogeneity of genetic modifiers ensures normal cardiac development. Circulation. 2010;121(11):1313–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Prendiville T, Jay PY, Pu WT. Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders. Cold Spring Harb Perspect Med. 2014;4(10):a013946.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rogers MS, D’Amato RJ. The effect of genetic diversity on angiogenesis. Exp Cell Res. 2006;312(5):561–74.CrossRefGoogle Scholar
  28. 28.
    Abou Hassan OK, et al. NKX2-5 mutations in an inbred consanguineous population: genetic and phenotypic diversity. Sci Rep. 2015;5:8848.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McElhinney DB, et al. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–5.CrossRefGoogle Scholar
  30. 30.
    Bruneau BG, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106(6):709–21.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gao J, et al. From genotype to phenotype: cytochrome P450 2D6-mediated drug clearance in humans. Mol Pharm. 2017;14(3):649–57.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ur Rasheed MS, Mishra AK, Singh MP. Cytochrome P450 2D6 and Parkinson’s disease: polymorphism, metabolic role, risk and protection. Neurochem Res. 2017;42(12):3353–61.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lessard E, et al. Role of CYP2D6 in the N-hydroxylation of procainamide. Pharmacogenetics. 1997;7(5):381–90.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mottet F, Vardeny O, de Denus S. Pharmacogenomics of heart failure: a systematic review. Pharmacogenomics. 2016;17(16):1817–58.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gaynor JW, et al. Validation of association of the apolipoprotein E epsilon2 allele with neurodevelopmental dysfunction after cardiac surgery in neonates and infants. J Thorac Cardiovasc Surg. 2014;148(6):2560–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gaynor JW, et al. Apolipoprotein E genotype modifies the risk of behavior problems after infant cardiac surgery. Pediatrics. 2009;124(1):241–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kim DS, et al. Patient genotypes impact survival after surgery for isolated congenital heart disease. Ann Thorac Surg. 2014;98(1):104–10; discussion 110–1.Google Scholar
  38. 38.
    Mital S, et al. Renin-angiotensin-aldosterone genotype influences ventricular remodeling in infants with single ventricle. Circulation. 2011;123(21):2353–62.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010;19(R2):R145–51.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Veeramah KR, Hammer MF. The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet. 2014;15(3):149–62.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chung JH, et al. Whole-genome sequencing and integrative genomic analysis approach on two 22q11.2 deletion syndrome family trios for genotype to phenotype correlations. Hum Mutat. 2015;36(8):797–807.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Krupp DR, et al. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 2017;101(3):369–90.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Menezes J, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Andersen TA, Troelsen Kde L, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci. 2014;71(8):1327–52.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stallmeyer B, et al. Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet. 2010;78(6):533–40.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dewey FE, et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ Cardiovasc Genet. 2011;4(1):26–35.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lage K, et al. Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA. 2012;109(35):14035–40.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sperling SR. Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res. 2011;91(2):269–78.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Esposito G, et al. Somatic mutations in NKX2-5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A. 2011;155A(10):2416–21.CrossRefGoogle Scholar
  51. 51.
    Zheng J, et al. Investigation of somatic NKX2-5 mutations in Chinese children with congenital heart disease. Int J Med Sci. 2015;12(7):538–43.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    van der Linde D, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.CrossRefGoogle Scholar
  53. 53.
    Sifrim A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet. 2005;76(1):8–32.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    West AG, Fraser P. Remote control of gene transcription. Hum Mol Genet. 2005;14(1):R101–11.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Velagaleti GV, et al. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet. 2005;76(4):652–62.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Saitsu H, Shiota K, Ishibashi M. Analysis of Fibroblast growth factor 15 cis-elements reveals two conserved enhancers which are closely related to cardiac outflow tract development. Mech Dev. 2006;123(9):665–73.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Strahle U, Rastegar S. Conserved non-coding sequences and transcriptional regulation. Brain Res Bull. 2008;75(2-4):225–30.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Carey AS, et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet. 2013;6(5):444–51.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Glessner JT, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115(10):884–96.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Warburton D, et al. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet. 2014;133(1):11–27.CrossRefGoogle Scholar
  62. 62.
    Gelb BD, Chung WK. Complex genetics and the etiology of human congenital heart disease. Cold Spring Harb Perspect Med. 2014;4(7):a013953.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cowan JR, Ware SM. Genetics and genetic testing in congenital heart disease. Clin Perinatol. 2015;42(2):373–93, ixCrossRefGoogle Scholar
  64. 64.
    Geng J, et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 2014;15:1127.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Miller DT, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Arndt AK, MacRae CA. Genetic testing in cardiovascular diseases. Curr Opin Cardiol. 2014;29(3):235–40.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Landis BJ, Ware SM. The current landscape of genetic testing in cardiovascular malformations: opportunities and challenges. Front Cardiovasc Med. 2016;3:22.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Aiyagari R, et al. Impact of pre-stage II hemodynamics and pulmonary artery anatomy on 12-month outcomes in the Pediatric Heart Network Single Ventricle Reconstruction trial. J Thorac Cardiovasc Surg. 2014;148(4):1467–74.CrossRefGoogle Scholar
  69. 69.
    Tomita-Mitchell A, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44(9):518–41.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Yale University School of MedicineNew HavenUSA
  2. 2.Children’s Hospital of Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations