Advertisement

The Genetic Landscape of Cardiomyopathies

  • Brenda GerullEmail author
  • Sabine Klaassen
  • Andreas Brodehl
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 7)

Abstract

Insights into genetic causes of cardiomyopathies have tremendously contributed to the understanding of the molecular basis and pathophysiology of hypertrophic, dilated, arrhythmogenic, restrictive and left ventricular noncompaction cardiomyopathy. More than thousand mutations in approximately 100 genes encoding proteins involved in many different subcellular systems have been identified indicating the diversity of pathways contributing to pathological cardiac remodeling. Moreover, the classical view based on morphology and physiology has been shifted toward genetic and molecular patterns defining the etiology of cardiomyopathies. Today, novel high-throughput genetic technologies provide an opportunity to diagnose individuals based on their genetic findings, sometimes before clinical signs of the disease occur. However, the challenge remains that rapid research developments and the complexity of genetic information are getting introduced into the clinical practice, which requires dedicated guidance in genetic counselling and interpretation of genetic test results for the management of families with inherited cardiomyopathies.

Keywords

Cardiomyopathy Heart failure Sudden death Disease genes Molecular genetics Genetic diagnosis Genetic counselling Next-generation sequencing 

Notes

Compliance with Ethical Standards

Conflict of Interest

Brenda Gerull declares that she has no conflict of interest. Sabine Klaassen declares that she has no conflict of interest. Andreas Brodehl declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.  https://doi.org/10.1161/CIRCULATIONAHA.106.174287.CrossRefGoogle Scholar
  2. 2.
    Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006.  https://doi.org/10.1016/0092-8674(90)90274-I.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck-Zwarts KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res. 2015;105(4):397–408.  https://doi.org/10.1093/cvr/cvv025.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36(11):1162–4.  https://doi.org/10.1038/ng1461.CrossRefPubMedGoogle Scholar
  5. 5.
    McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet (London, England). 2000;355(9221):2119–24.CrossRefGoogle Scholar
  6. 6.
    Genomes Project, C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.  https://doi.org/10.1038/nature09534.CrossRefGoogle Scholar
  7. 7.
    Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V, Pesce LL, et al. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. Circ Cardiovasc Genet. 2014;7(6):751–9.  https://doi.org/10.1161/CIRCGENETICS.113.000578.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol. 2017;106(2):127–39.  https://doi.org/10.1007/s00392-016-1033-6.CrossRefPubMedGoogle Scholar
  9. 9.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23.  https://doi.org/10.1038/gim.2015.30.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic Analysis of 4111 Subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92(4):785–9.  https://doi.org/10.1161/01.cir.92.4.785.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.  https://doi.org/10.1093/eurheartj/ehu284.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60.  https://doi.org/10.1016/j.jacc.2011.06.011.CrossRefPubMedGoogle Scholar
  13. 13.
    Nagueh SF, Mahmarian JJ. Noninvasive cardiac imaging in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;48(12):2410–22.  https://doi.org/10.1016/j.jacc.2006.07.065.CrossRefPubMedGoogle Scholar
  14. 14.
    Maron BJ, Rowin EJ, Casey SA, Garberich RF, Maron MS. What do patients with hypertrophic cardiomyopathy die from? Am J Cardiol. 2016a;117(3):434–5.  https://doi.org/10.1016/j.amjcard.2015.11.013.CrossRefPubMedGoogle Scholar
  15. 15.
    Maron BJ, Rowin EJ, Casey SA, Lesser JR, Garberich RF, McGriff DM, Maron MS. Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation. 2016b;133(1):62–73.  https://doi.org/10.1161/circulationaha.115.017633.CrossRefPubMedGoogle Scholar
  16. 16.
    Maron BJ, Rowin EJ, Casey SA, Link MS, Lesser JR, Chan RH, et al. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol. 2015;65(18):1915–28.  https://doi.org/10.1016/j.jacc.2015.02.061.CrossRefPubMedGoogle Scholar
  17. 17.
    Charron P, Carrier L, Dubourg O, Tesson F, Desnos M, Richard P, et al. Penetrance of familial hypertrophic cardiomyopathy. Genet Couns. 1997;8(2):107–14.PubMedGoogle Scholar
  18. 18.
    Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42(10):e59.  https://doi.org/10.1136/jmg.2005.033886.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.CrossRefGoogle Scholar
  20. 20.
    Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, et al. Mutations in the gene for cardiac myosin-binding protein c and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998;338(18):1248–57.  https://doi.org/10.1056/nejm199804303381802.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Page SP, Kounas S, Syrris P, Christiansen M, Frank-Hansen R, Andersen PS, et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012;5(2):156–66.  https://doi.org/10.1161/circgenetics.111.960831.CrossRefPubMedGoogle Scholar
  22. 22.
    Golbus JR, Puckelwartz MJ, Fahrenbach JP, Dellefave-Castillo LM, Wolfgeher D, McNally EM. Population-based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5(4):391–9.  https://doi.org/10.1161/CIRCGENETICS.112.962928.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77(5):701–12.  https://doi.org/10.1016/0092-8674(94)90054-X.CrossRefGoogle Scholar
  24. 24.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–7.CrossRefGoogle Scholar
  25. 25.
    Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–40.CrossRefGoogle Scholar
  26. 26.
    Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13(1):63–9.CrossRefGoogle Scholar
  27. 27.
    Kimura A, Harada H, Park J-E, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379–82.CrossRefGoogle Scholar
  28. 28.
    Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, et al. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103(10):R39–43.  https://doi.org/10.1172/JCI6460.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Andersen PS, Havndrup O, Hougs L, Sørensen KM, Jensen M, Larsen LA, et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat. 2009;30(3):363–70.  https://doi.org/10.1002/humu.20862.CrossRefPubMedGoogle Scholar
  30. 30.
    Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic cardiomyopathy. Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–32.  https://doi.org/10.1161/01.cir.0000066323.15244.54.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871–86.  https://doi.org/10.1016/j.jacc.2016.08.079.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Knoll R, Buyandelger B, Lab M. The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol. 2011;2011:569628.  https://doi.org/10.1155/2011/569628.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy-associated mutations in genes that encode calcium-handling proteins. Curr Mol Med. 2012;12(5):507–18.CrossRefGoogle Scholar
  34. 34.
    Millat G, Bouvagnet P, Chevalier P, Dauphin C, Simon Jouk P, Da Costa A, et al. Prevalence and spectrum of mutations in a cohort of 192 unrelated patients with hypertrophic cardiomyopathy. Eur J Med Genet. 2010;53(5):261–7.  https://doi.org/10.1016/j.ejmg.2010.07.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, et al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994;93(1):280–5.  https://doi.org/10.1172/JCI116957.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pasquale F, Syrris P, Kaski JP, Mogensen J, McKenna WJ, Elliott P. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ Cardiovasc Genet. 2012;5(1):10–7.  https://doi.org/10.1161/circgenetics.111.959973.CrossRefPubMedGoogle Scholar
  37. 37.
    Alpert NR, Mohiddin SA, Tripodi D, Jacobson-Hatzell J, Vaughn-Whitley K, Brosseau C, et al. Molecular and phenotypic effects of heterozygous, homozygous, and compound heterozygote myosin heavy-chain mutations. Am J Physiol Heart Circ Physiol. 2005;288(3):H1097–102.  https://doi.org/10.1152/ajpheart.00650.2004.CrossRefPubMedGoogle Scholar
  38. 38.
    Fourey D, Care M, Siminovitch KA, Weissler-Snir A, Hindieh W, Chan RH, et al. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect. Circ Cardiovasc Genet. 2017;10(2):e001685.  https://doi.org/10.1161/circgenetics.116.001685.CrossRefPubMedGoogle Scholar
  39. 39.
    Olivotto I, d’Amati G, Basso C, Van Rossum A, Patten M, Emdin M, et al. Defining phenotypes and disease progression in sarcomeric cardiomyopathies: contemporary role of clinical investigations. Cardiovasc Res. 2015;105(4):409–23.  https://doi.org/10.1093/cvr/cvv024.CrossRefPubMedGoogle Scholar
  40. 40.
    Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010;31(22):2715–26.  https://doi.org/10.1093/eurheartj/ehq271.CrossRefPubMedGoogle Scholar
  41. 41.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270–6.  https://doi.org/10.1093/eurheartj/ehm342.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, et al. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet. 2013;21(9):918–28.  https://doi.org/10.1038/ejhg.2012.283.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet. 2013;50(4):228–39.  https://doi.org/10.1136/jmedgenet-2012-101270.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115(6):773–81.  https://doi.org/10.1161/circulationaha.106.621185.CrossRefPubMedGoogle Scholar
  45. 45.
    Rapezzi C, Arbustini E, Caforio AL, Charron P, Gimeno-Blanes J, Helio T, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(19):1448–58.  https://doi.org/10.1093/eurheartj/ehs397.CrossRefPubMedGoogle Scholar
  46. 46.
    Sata M, Ikebe M. Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J Clin Invest. 1996;98(12):2866–73.  https://doi.org/10.1172/jci119115.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res. 2011;108(6):751–64.  https://doi.org/10.1161/circresaha.110.231670.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JMJ, Winegrad S, et al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy. Haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009;119(11):1473–83.  https://doi.org/10.1161/circulationaha.108.838672.CrossRefGoogle Scholar
  49. 49.
    Robinson P, Griffiths PJ, Watkins H, Redwood CS. Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res. 2007;101(12):1266–73.  https://doi.org/10.1161/circresaha.107.156380.CrossRefPubMedGoogle Scholar
  50. 50.
    Robinson P, Mirza M, Knott A, Abdulrazzak H, Willott R, Marston S, et al. Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem. 2002;277(43):40710–6.  https://doi.org/10.1074/jbc.M203446200.CrossRefPubMedGoogle Scholar
  51. 51.
    Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC. Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol. 2009;297(2):H614–26.  https://doi.org/10.1152/ajpheart.01143.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86–96.  https://doi.org/10.1161/circresaha.111.242974.CrossRefPubMedGoogle Scholar
  53. 53.
    Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J. 2014;106(6):1236–49.  https://doi.org/10.1016/j.bpj.2014.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kirschner SE, Becker E, Antognozzi M, Kubis HP, Francino A, Navarro-Lopez F, et al. Hypertrophic cardiomyopathy-related beta-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells. Am J Physiol Heart Circ Physiol. 2005;288(3):H1242–51.  https://doi.org/10.1152/ajpheart.00686.2004.CrossRefPubMedGoogle Scholar
  55. 55.
    Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617–21.  https://doi.org/10.1126/science.aad3456.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31(1):186–94.CrossRefGoogle Scholar
  57. 57.
    Petretta M, Pirozzi F, Sasso L, Paglia A, Bonaduce D. Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol. 2011;108(8):1171–6.  https://doi.org/10.1016/j.amjcard.2011.06.022.CrossRefPubMedGoogle Scholar
  58. 58.
    Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850–8.  https://doi.org/10.1093/eurheartj/ehv727.CrossRefPubMedGoogle Scholar
  59. 59.
    Codd MB, Sugrue DD, Gersh BJ, Melton LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation. 1989;80(3):564–72.  https://doi.org/10.1161/01.cir.80.3.564.CrossRefPubMedGoogle Scholar
  60. 60.
    Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B, Khin E, et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet. 2017;49(1):46–53.  https://doi.org/10.1038/ng.3719.. http://www.nature.com/ng/journal/v49/n1/abs/ng.3719.html#supplementary-information CrossRefPubMedGoogle Scholar
  61. 61.
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896–908.  https://doi.org/10.1001/jama.2013.1363.CrossRefPubMedGoogle Scholar
  62. 62.
    Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375(13):1221–30.  https://doi.org/10.1056/NEJMoa1608029.CrossRefPubMedGoogle Scholar
  63. 63.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.  https://doi.org/10.1093/eurjhf/hfs105.CrossRefPubMedGoogle Scholar
  64. 64.
    Duboc D, Meune C, Pierre B, Wahbi K, Eymard B, Toutain A, et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart J. 2007;154(3):596–602.  https://doi.org/10.1016/j.ahj.2007.05.014.CrossRefPubMedGoogle Scholar
  65. 65.
    Mahon NG, Murphy RT, MacRae CA, Caforio AL, Elliott PM, McKenna WJ. Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann Intern Med. 2005;143(2):108–15.CrossRefGoogle Scholar
  66. 66.
    Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47.  https://doi.org/10.1038/nrcardio.2013.105.CrossRefPubMedGoogle Scholar
  67. 67.
    Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MR. Genetic causes of dilated cardiomyopathy. Prog Pediatr Cardiol. 2014;37(1–2):13–8.  https://doi.org/10.1016/j.ppedcard.2014.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123–35.  https://doi.org/10.1093/eurheartj/ehu301.CrossRefPubMedGoogle Scholar
  69. 69.
    Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002;30(2):201–4.  https://doi.org/10.1038/ng815.CrossRefGoogle Scholar
  70. 70.
    Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28.  https://doi.org/10.1056/NEJMoa1110186.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra276.  https://doi.org/10.1126/scitranslmed.3010134.CrossRefGoogle Scholar
  72. 72.
    Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715–24.  https://doi.org/10.1056/nejm199912023412302.CrossRefPubMedGoogle Scholar
  73. 73.
    Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000;343(23):1688–96.  https://doi.org/10.1056/nejm200012073432304.CrossRefPubMedGoogle Scholar
  74. 74.
    McNally EM, Puckelwartz MJ. Genetic variation in cardiomyopathy and cardiovascular disorders. Circ J. 2015;79(7):1409–15.  https://doi.org/10.1253/circj.CJ-15-0536.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Akinrinade O, Alastalo TP, Koskenvuo JW. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin Genet. 2016;90(1):49–54.  https://doi.org/10.1111/cge.12741.CrossRefPubMedGoogle Scholar
  76. 76.
    Brayson D, Shanahan CM. Current insights into LMNA cardiomyopathies: existing models and missing LINCs. Nucleus. 2017;8(1):17–33.  https://doi.org/10.1080/19491034.2016.1260798.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest. 2004;113(3):357–69.  https://doi.org/10.1172/JCI19448.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8(4):323–7.  https://doi.org/10.1038/ng1294-323.CrossRefPubMedGoogle Scholar
  79. 79.
    Arndt AK, Schafer S, Drenckhahn JD, Sabeh MK, Plovie ER, Caliebe A, et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am J Hum Genet. 2013;93(1):67–77.  https://doi.org/10.1016/j.ajhg.2013.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, et al. Mutations in cardiac T-box factor gene <em>TBX20</em> are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81(2):280–91.  https://doi.org/10.1086/519530.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Williams T, Hundertmark M, Nordbeck P, Voll S, Arias-Loza PA, Oppelt D, et al. Eya4 induces hypertrophy via regulation of p27kip1. Circ Cardiovasc Genet. 2015;8(6):752–64.  https://doi.org/10.1161/circgenetics.115.001134.CrossRefPubMedGoogle Scholar
  82. 82.
    Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, et al. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med. 2014;34(5):1315–22.  https://doi.org/10.3892/ijmm.2014.1896.CrossRefPubMedGoogle Scholar
  83. 83.
    Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, et al. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J Mol Med. 2015;35(2):478–86.  https://doi.org/10.3892/ijmm.2014.2029.CrossRefPubMedGoogle Scholar
  84. 84.
    Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73.  https://doi.org/10.1038/nm.2693.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Invest. 2014;124(8):3419–30.  https://doi.org/10.1172/jci74523.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 2003;299(5611):1410–3.  https://doi.org/10.1126/science.1081578.CrossRefPubMedGoogle Scholar
  87. 87.
    Abrol N, de Tombe PP, Robia SL. Acute inotropic and lusitropic effects of cardiomyopathic R9C mutation of phospholamban. J Biol Chem. 2015;290(11):7130–40.  https://doi.org/10.1074/jbc.M114.630319.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    McNair WP, Sinagra G, Taylor MRG, Di Lenarda A, Ferguson DA, Salcedo EE, et al. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol. 2011;57(21):2160–8.  https://doi.org/10.1016/j.jacc.2010.09.084.CrossRefPubMedGoogle Scholar
  89. 89.
    Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36(4):382–7.CrossRefGoogle Scholar
  90. 90.
    Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci. 2008;1:21–6.  https://doi.org/10.1111/j.1752-8062.2008.00017.x.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17(18):2753–65.  https://doi.org/10.1093/hmg/ddn160.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003;80(1-2):207–15.CrossRefGoogle Scholar
  93. 93.
    Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342(11):770–80.  https://doi.org/10.1056/nejm200003163421104.CrossRefPubMedGoogle Scholar
  94. 94.
    Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A. Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat. 2011;32(12):1481–91.  https://doi.org/10.1002/humu.21603.CrossRefPubMedGoogle Scholar
  95. 95.
    Garcia-Pavia P, Syrris P, Salas C, Evans A, Mirelis JG, Cobo-Marcos M, et al. Desmosomal protein gene mutations in patients with idiopathic dilated cardiomyopathy undergoing cardiac transplantation: a clinicopathological study. Heart. 2011;97(21):1744–52.  https://doi.org/10.1136/hrt.2011.227967.CrossRefPubMedGoogle Scholar
  96. 96.
    Patel DM, Green KJ. Desmosomes in the heart: a review of clinical and mechanistic analyses. Cell Commun Adhes. 2014;21(3):109–28.  https://doi.org/10.3109/15419061.2014.906533.CrossRefPubMedGoogle Scholar
  97. 97.
    Behin A, Salort-Campana E, Wahbi K, Richard P, Carlier RY, Carlier P, et al. Myofibrillar myopathies: state of the art, present and future challenges. Rev Neurol (Paris). 2015;171(10):715–29.  https://doi.org/10.1016/j.neurol.2015.06.002.CrossRefGoogle Scholar
  98. 98.
    Sommerville RB, Vincenti MG, Winborn K, Casey A, Stitziel NO, Connolly AM, Mann DL. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: a model for the multidisciplinary care of complex genetic disorders. Trends Cardiovasc Med. 2017;27(1):51–8.  https://doi.org/10.1016/j.tcm.2016.06.005.CrossRefPubMedGoogle Scholar
  99. 99.
    Worman HJ, Bonne G. “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res. 2007;313(10):2121–33.  https://doi.org/10.1016/j.yexcr.2007.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67(21):2533–46.  https://doi.org/10.1016/j.jacc.2016.02.081.CrossRefPubMedGoogle Scholar
  101. 101.
    Pua CJ, Bhalshankar J, Miao K, Walsh R, John S, Lim SQ, et al. Development of a comprehensive sequencing assay for inherited cardiac condition genes. J Cardiovasc Transl Res. 2016;9(1):3–11.  https://doi.org/10.1007/s12265-016-9673-5.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Akinrinade O, Ollila L, Vattulainen S, Tallila J, Gentile M, Salmenpera P, et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart J. 2015;36(34):2327–37.  https://doi.org/10.1093/eurheartj/ehv253.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Hershberger RE, Morales A. LMNA-related dilated cardiomyopathy. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews(R). Seattle (WA): University of Washington, Seattle; 1993.Google Scholar
  104. 104.
    Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008;52(15):1250–60.  https://doi.org/10.1016/j.jacc.2008.06.044.CrossRefPubMedGoogle Scholar
  105. 105.
    van Rijsingen IAW, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: a European Cohort Study. J Am Coll Cardiol. 2012;59(5):493–500.  https://doi.org/10.1016/j.jacc.2011.08.078.CrossRefPubMedGoogle Scholar
  106. 106.
    Franaszczyk M, Chmielewski P, Truszkowska G, Stawinski P, Michalak E, Rydzanicz M, et al. Titin truncating variants in dilated cardiomyopathy – prevalence and genotype-phenotype correlations. PLoS One. 2017;12(1):e0169007.  https://doi.org/10.1371/journal.pone.0169007.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Taylor MR, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41(5):771–80.CrossRefGoogle Scholar
  108. 108.
    Roncarati R, Viviani Anselmi C, Krawitz P, Lattanzi G, von Kodolitsch Y, Perrot A, et al. Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy. Eur J Hum Genet. 2013;21(10):1105–11.  https://doi.org/10.1038/ejhg.2013.16.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507–13.CrossRefGoogle Scholar
  110. 110.
    Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666–71.CrossRefGoogle Scholar
  111. 111.
    Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J. 2011;32(12):1446–56.  https://doi.org/10.1093/eurheartj/ehq508.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, et al. Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol. 2016;68(20):2157–65.  https://doi.org/10.1016/j.jacc.2016.08.054.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999;34(1):233–40.CrossRefGoogle Scholar
  114. 114.
    Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J. 2005;26(2):187–92.  https://doi.org/10.1093/eurheartj/ehi025.CrossRefGoogle Scholar
  115. 115.
    Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.CrossRefGoogle Scholar
  116. 116.
    Belanger AR, Miller MA, Donthireddi UR, Najovits AJ, Goldman ME. New classification scheme of left ventricular noncompaction and correlation with ventricular performance. Am J Cardiol. 2008;102(1):92–6.  https://doi.org/10.1016/j.amjcard.2008.02.107.CrossRefPubMedGoogle Scholar
  117. 117.
    Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J. 2008;29(1):89–95.  https://doi.org/10.1093/eurheartj/ehm481.CrossRefGoogle Scholar
  118. 118.
    Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64(19):1971–80.  https://doi.org/10.1016/j.jacc.2014.08.035.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639–46.  https://doi.org/10.1056/NEJMoa021737.CrossRefPubMedGoogle Scholar
  120. 120.
    Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail. 2015;21(11):877–84.  https://doi.org/10.1016/j.cardfail.2015.06.381.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, Decker JA, et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation. 2013;127(22):2202–8.  https://doi.org/10.1161/CIRCULATIONAHA.113.002511.CrossRefPubMedGoogle Scholar
  122. 122.
    Anderson RH, Jensen B, Mohun TJ, Petersen SE, Aung N, Zemrak F, et al. Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? Can J Cardiol. 2017;33(6):747–57.  https://doi.org/10.1016/j.cjca.2017.01.017.CrossRefPubMedGoogle Scholar
  123. 123.
    Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH. The morphological spectrum of ventricular noncompaction. Cardiol Young. 2005;15(4):345–64.  https://doi.org/10.1017/S1047951105000752.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031–42.  https://doi.org/10.1038/ncb3411.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12(3):415–29.  https://doi.org/10.1016/j.devcel.2006.12.011.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet A. 2003;119A(2):162–7.  https://doi.org/10.1002/ajmg.a.20075.CrossRefPubMedGoogle Scholar
  127. 127.
    Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, et al. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 2011;4(4):367–74.  https://doi.org/10.1161/CIRCGENETICS.110.959270.CrossRefPubMedGoogle Scholar
  128. 128.
    Budde BS, Binner P, Waldmuller S, Hohne W, Blankenfeldt W, Hassfeld S, et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One. 2007;2(12):e1362.  https://doi.org/10.1371/journal.pone.0001362.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Hoedemaekers YM, Caliskan K, Michels M, Frohn-Mulder I, van der Smagt JJ, Phefferkorn JE, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet. 2010;3(3):232–9.  https://doi.org/10.1161/CIRCGENETICS.109.903898.CrossRefPubMedGoogle Scholar
  130. 130.
    Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008;117(22):2893–901.  https://doi.org/10.1161/CIRCULATIONAHA.107.746164.CrossRefPubMedGoogle Scholar
  131. 131.
    Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4(1):43–50.  https://doi.org/10.1161/CIRCGENETICS.110.957985.CrossRefPubMedGoogle Scholar
  132. 132.
    Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A, de Krijger RR, et al. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet. 2015;23(7):922–8.  https://doi.org/10.1038/ejhg.2014.211.CrossRefPubMedGoogle Scholar
  133. 133.
    Monserrat L, Hermida-Prieto M, Fernandez X, Rodriguez I, Dumont C, Cazon L, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28(16):1953–61.  https://doi.org/10.1093/eurheartj/ehm239.CrossRefPubMedGoogle Scholar
  134. 134.
    Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, et al. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ Cardiovasc Genet. 2016;9(5):426–35.  https://doi.org/10.1161/CIRCGENETICS.116.001431.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, Chin TK, Ward K. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61(4):868–72.  https://doi.org/10.1086/514879.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003;42(11):2014–27.CrossRefGoogle Scholar
  137. 137.
    Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med Genet. 2014;15:99.  https://doi.org/10.1186/s12881-014-0099-0.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014;64(8):745–56.  https://doi.org/10.1016/j.jacc.2014.05.045.CrossRefPubMedGoogle Scholar
  139. 139.
    Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P, Mereles D, et al. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol. 2014;64(8):757–67.  https://doi.org/10.1016/j.jacc.2014.06.1155.CrossRefPubMedGoogle Scholar
  140. 140.
    Shan L, Makita N, Xing Y, Watanabe S, Futatani T, Ye F, et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab. 2008;93(4):468–74.CrossRefGoogle Scholar
  141. 141.
    Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R, Peteiro J, et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol. 2004;94(1):50–4.  https://doi.org/10.1016/j.amjcard.2004.03.029.CrossRefPubMedGoogle Scholar
  142. 142.
    Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D'Amato G, MacGrogan D, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013;19(2):193–201.  https://doi.org/10.1038/nm.3046.CrossRefPubMedGoogle Scholar
  143. 143.
    Hoedemaekers YM, Klaassen S. Left ventricular noncompaction. In: Baars HF, Doevendans PAFM, Houweling A, Tintelen JP, editors. Clinical cardiogenetics. Berlin: Springer; 2016. p. 113–35.  https://doi.org/10.1007/978-3-319-44203-7.CrossRefGoogle Scholar
  144. 144.
    Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103(9):1256–63.CrossRefGoogle Scholar
  145. 145.
    Williams T, Machann W, Kuhler L, Hamm H, Muller-Hocker J, Zimmer M, et al. Novel desmoplakin mutation: juvenile biventricular cardiomyopathy with left ventricular non-compaction and acantholytic palmoplantar keratoderma. Clin Res Cardiol. 2011;100(12):1087–93.  https://doi.org/10.1007/s00392-011-0345-9.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, et al. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol. 2013;167(6):2477–81.  https://doi.org/10.1016/j.ijcard.2012.05.095.CrossRefPubMedGoogle Scholar
  147. 147.
    Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, et al. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta. 2011;412(1-2):170–5.  https://doi.org/10.1016/j.cca.2010.09.035.CrossRefPubMedGoogle Scholar
  148. 148.
    Finsterer J, Stollberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017;14(4):224–37.  https://doi.org/10.1038/nrcardio.2016.207.CrossRefPubMedGoogle Scholar
  149. 149.
    Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114(4):925–31.  https://doi.org/10.1542/peds.2004-0718.CrossRefPubMedGoogle Scholar
  150. 150.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.  https://doi.org/10.1161/CIRCULATIONAHA.108.840827.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Lancisi GM. De motu cordis et aneurysmatibus opus postumum. 1740.Google Scholar
  152. 152.
    Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, Grosgogeat Y. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65(2):384–98.CrossRefGoogle Scholar
  153. 153.
    Romero J, Mejia-Lopez E, Manrique C, Lucariello R. Arrhythmogenic right ventricular cardiomyopathy (ARVC/D): a systematic literature review. Clin Med Insights Cardiol. 2013;7:97–114.  https://doi.org/10.4137/CMC.S10940.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Bhonsale A, Te Riele A, Sawant AC, Groeneweg JA, James CA, Murray B, et al. Cardiac phenotype and long-term prognosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia patients with late presentation. Heart Rhythm. 2017;14(6):883–91.  https://doi.org/10.1016/j.hrthm.2017.02.013.CrossRefPubMedGoogle Scholar
  155. 155.
    McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, Camerini F. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J. 1994;71(3):215–8.CrossRefGoogle Scholar
  156. 156.
    van der Zwaag PA, van Rijsingen IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiesfeld AC, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14(11):1199–207.  https://doi.org/10.1093/eurjhf/hfs119.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Xu T, Yang Z, Vatta M, Rampazzo A, Beffagna G, Pilichou K, et al. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2010;55(6):587–97.  https://doi.org/10.1016/j.jacc.2009.11.020.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet. 2010;19(23):4595–607.  https://doi.org/10.1093/hmg/ddq387.CrossRefPubMedGoogle Scholar
  159. 159.
    Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200–6.  https://doi.org/10.1086/344208.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006;79(6):1081–8.  https://doi.org/10.1086/509044.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79(5):978–84.  https://doi.org/10.1086/509122.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113(9):1171–9.  https://doi.org/10.1161/CIRCULATIONAHA.105.583674.CrossRefPubMedGoogle Scholar
  163. 163.
    Vermij SH, Abriel H, van Veen TA. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res. 2017;113(3):259–75.  https://doi.org/10.1093/cvr/cvw259.CrossRefPubMedGoogle Scholar
  164. 164.
    Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, et al. Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2017;10(2):e001605.  https://doi.org/10.1161/CIRCGENETICS.116.001605.CrossRefPubMedGoogle Scholar
  165. 165.
    van Hengel J, Calore M, Bauce B, Dazzo E, Mazzotti E, De Bortoli M, et al. Mutations in the area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34(3):201–10.  https://doi.org/10.1093/eurheartj/ehs373.CrossRefPubMedGoogle Scholar
  166. 166.
    Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P, et al. Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace. 2010;12(6):861–8.  https://doi.org/10.1093/europace/euq104.CrossRefPubMedGoogle Scholar
  167. 167.
    Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10(3):189–94.CrossRefGoogle Scholar
  168. 168.
    Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C, et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005;65(2):366–73.  https://doi.org/10.1016/j.cardiores.2004.10.005.CrossRefPubMedGoogle Scholar
  169. 169.
    Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82(4):809–21.  https://doi.org/10.1016/j.ajhg.2008.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Erkapic D, Neumann T, Schmitt J, Sperzel J, Berkowitsch A, Kuniss M, et al. Electrical storm in a patient with arrhythmogenic right ventricular cardiomyopathy and SCN5A mutation. Europace. 2008;10(7):884–7.  https://doi.org/10.1093/europace/eun065.CrossRefPubMedGoogle Scholar
  171. 171.
    Taylor M, Graw S, Sinagra G, Barnes C, Slavov D, Brun F, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation. 2011;124(8):876–85.  https://doi.org/10.1161/CIRCULATIONAHA.110.005405.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Quarta G, Syrris P, Ashworth M, Jenkins S, Zuborne Alapi K, Morgan J, et al. Mutations in the Lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2012;33(9):1128–36.  https://doi.org/10.1093/eurheartj/ehr451.CrossRefPubMedGoogle Scholar
  173. 173.
    Lopez-Ayala JM, Ortiz-Genga M, Gomez-Milanes I, Lopez-Cuenca D, Ruiz-Espejo F, Sanchez-Munoz JJ, et al. A mutation in the Z-line Cypher/ZASP protein is associated with arrhythmogenic right ventricular cardiomyopathy. Clin Genet. 2015;88(2):172–6.  https://doi.org/10.1111/cge.12458.CrossRefPubMedGoogle Scholar
  174. 174.
    Xiong Q, Cao Q, Zhou Q, Xie J, Shen Y, Wan R, et al. Arrhythmogenic cardiomyopathy in a patient with a rare loss-of-function KCNQ1 mutation. J Am Heart Assoc. 2015;4(1):e001526.  https://doi.org/10.1161/JAHA.114.001526.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Protonotarios N, Tsatsopoulou A. Naxos disease: cardiocutaneous syndrome due to cell adhesion defect. Orphanet J Rare Dis. 2006;1:4.  https://doi.org/10.1186/1750-1172-1-4.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol. 2009;16(2):107–13.  https://doi.org/10.1038/nsmb.1550.CrossRefPubMedGoogle Scholar
  177. 177.
    Zhang Z, Stroud MJ, Zhang J, Fang X, Ouyang K, Kimura K, et al. Normalization of Naxos plakoglobin levels restores cardiac function in mice. J Clin Invest. 2015;125(4):1708–12.  https://doi.org/10.1172/JCI80335.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9(18):2761–6.CrossRefGoogle Scholar
  179. 179.
    Green KJ, Stappenbeck TS, Parry DA, Virata ML. Structure of desmoplakin and its association with intermediate filaments. J Dermatol. 1992;19(11):765–9.CrossRefGoogle Scholar
  180. 180.
    Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J Biol Chem. 2002;277(12):10512–22.  https://doi.org/10.1074/jbc.M108765200.CrossRefPubMedGoogle Scholar
  181. 181.
    Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol. 2011;195(7):1185–203.  https://doi.org/10.1083/jcb.201106057.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Kirchner F, Schuetz A, Boldt LH, Martens K, Dittmar G, Haverkamp W, et al. Molecular insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 missense mutations. Circ Cardiovasc Genet. 2012;5(4):400–11.  https://doi.org/10.1161/CIRCGENETICS.111.961854.CrossRefPubMedGoogle Scholar
  183. 183.
    Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, Shapiro L. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci USA. 2016;113(26):7160–5.  https://doi.org/10.1073/pnas.1606272113.CrossRefPubMedGoogle Scholar
  184. 184.
    Gerull B, Kirchner F, Chong JX, Tagoe J, Chandrasekharan K, Strohm O, et al. Homozygous founder mutation in desmocollin-2 (DSC2) causes arrhythmogenic cardiomyopathy in the Hutterite population. Circ Cardiovasc Genet. 2013;6(4):327–36.  https://doi.org/10.1161/CIRCGENETICS.113.000097.CrossRefPubMedGoogle Scholar
  185. 185.
    Simpson MA, Mansour S, Ahnood D, Kalidas K, Patton MA, McKenna WJ, et al. Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology. 2009;113(1):28–34.  https://doi.org/10.1159/000165696.CrossRefPubMedGoogle Scholar
  186. 186.
    Wong JA, Duff HJ, Yuen T, Kolman L, Exner DV, Weeks SG, Gerull B. Phenotypic analysis of arrhythmogenic cardiomyopathy in the Hutterite population: role of electrocardiogram in identifying high-risk desmocollin-2 carriers. J Am Heart Assoc. 2014;3(6):e001407.  https://doi.org/10.1161/JAHA.114.001407.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, et al. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm. 2009;6(11):1574–83.  https://doi.org/10.1016/j.hrthm.2009.07.041.CrossRefPubMedGoogle Scholar
  188. 188.
    Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, et al. Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem. 2012;287(19):16047–57.  https://doi.org/10.1074/jbc.M111.313841.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Turkowski KL, Tester DJ, Bos JM, Haugaa KH, Ackerman MJ. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy. Congenit Heart Dis. 2017;12(2):226–35.  https://doi.org/10.1111/chd.12462.CrossRefPubMedGoogle Scholar
  190. 190.
    Bers DM, Perez-Reyes E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res. 1999;42(2):339–60.CrossRefGoogle Scholar
  191. 191.
    Kranias EG, Bers DM. Calcium and cardiomyopathies. Subcell Biochem. 2007;45:523–37.CrossRefGoogle Scholar
  192. 192.
    Ma Y, Zou H, Zhu XX, Pang J, Xu Q, Jin QY, et al. Transforming growth factor beta: a potential biomarker and therapeutic target of ventricular remodeling. Oncotarget. 2017;8(32):53780–90.  https://doi.org/10.18632/oncotarget.17255.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Milting H, Klauke B, Christensen AH, Musebeck J, Walhorn V, Grannemann S, et al. The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus. Eur Heart J. 2015;36(14):872–81.  https://doi.org/10.1093/eurheartj/ehu077.CrossRefPubMedGoogle Scholar
  194. 194.
    Bengtsson L, Otto H. LUMA interacts with emerin and influences its distribution at the inner nuclear membrane. J Cell Sci. 2008;121(Pt 4):536–48.  https://doi.org/10.1242/jcs.019281.CrossRefPubMedGoogle Scholar
  195. 195.
    Garcia MJ. Constrictive pericarditis versus restrictive cardiomyopathy? J Am Coll Cardiol. 2016;67(17):2061–76.  https://doi.org/10.1016/j.jacc.2016.01.076.CrossRefPubMedGoogle Scholar
  196. 196.
    Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–76.  https://doi.org/10.1056/NEJM199701233360407.CrossRefPubMedGoogle Scholar
  197. 197.
    Schulz V, Hendig D, Szliska C, Gotting C, Kleesiek K. Novel mutations in the ABCC6 gene of German patients with pseudoxanthoma elasticum. Hum Biol. 2005;77(3):367–84.CrossRefGoogle Scholar
  198. 198.
    Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–300.  https://doi.org/10.1161/CIRCULATIONAHA.111.078915.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Kostareva A, Kiselev A, Gudkova A, Frishman G, Ruepp A, Frishman D, et al. Genetic spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing. PLoS One. 2016;11(9):e0163362.  https://doi.org/10.1371/journal.pone.0163362.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111(2):209–16.  https://doi.org/10.1172/JCI16336.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc). 1999;64(9):969–85.Google Scholar
  202. 202.
    Peddy SB, Vricella LA, Crosson JE, Oswald GL, Cohn RD, Cameron DE, et al. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics. 2006;117(5):1830–3.  https://doi.org/10.1542/peds.2005-2301.CrossRefPubMedGoogle Scholar
  203. 203.
    Ploski R, Rydzanicz M, Ksiazczyk TM, Franaszczyk M, Pollak A, Kosinska J, et al. Evidence for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with fatal outcome in infancy. Am J Med Genet A. 2016;170(12):3241–8.  https://doi.org/10.1002/ajmg.a.37860.CrossRefPubMedGoogle Scholar
  204. 204.
    Marques MA, de Oliveira GA. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the hypertrophic cardiomyopathy phenotype. Front Physiol. 2016;7:429.  https://doi.org/10.3389/fphys.2016.00429.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Karam S, Raboisson MJ, Ducreux C, Chalabreysse L, Millat G, Bozio A, Bouvagnet P. A de novo mutation of the beta cardiac myosin heavy chain gene in an infantile restrictive cardiomyopathy. Congenit Heart Dis. 2008;3(2):138–43.  https://doi.org/10.1111/j.1747-0803.2008.00165.x.CrossRefPubMedGoogle Scholar
  206. 206.
    Kaski JP, Syrris P, Burch M, Tome-Esteban MT, Fenton M, Christiansen M, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008;94(11):1478–84.  https://doi.org/10.1136/hrt.2007.134684.CrossRefPubMedGoogle Scholar
  207. 207.
    Wu W, Lu CX, Wang YN, Liu F, Chen W, Liu YT, et al. Novel phenotype-genotype correlations of restrictive cardiomyopathy with myosin-binding protein C (MYBPC3) gene mutations tested by next-generation sequencing. J Am Heart Assoc. 2015;4(7):e001879.  https://doi.org/10.1161/JAHA.115.001879.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Peled Y, Gramlich M, Yoskovitz G, Feinberg MS, Afek A, Polak-Charcon S, et al. Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol. 2014;171(1):24–30.  https://doi.org/10.1016/j.ijcard.2013.11.037.CrossRefPubMedGoogle Scholar
  209. 209.
    Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet. 2012;21(9):2039–53.  https://doi.org/10.1093/hmg/dds022.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol. 2001;153(2):413–27.CrossRefGoogle Scholar
  211. 211.
    Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8(5):477–83.  https://doi.org/10.1016/j.ejheart.2005.11.003.CrossRefPubMedGoogle Scholar
  212. 212.
    Brodehl A, Ferrier RA, Hamilton SJ, Greenway SC, Brundler MA, Yu W, et al. Mutations in FLNC are associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37(3):269–79.  https://doi.org/10.1002/humu.22942.CrossRefPubMedGoogle Scholar
  213. 213.
    Brodehl A, Gaertner-Rommel A, Klauke B, Grewe SA, Schirmer I, Peterschroder A, et al. The novel alphaB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum Mutat. 2017;38(8):947–52.  https://doi.org/10.1002/humu.23248.CrossRefPubMedGoogle Scholar
  214. 214.
    Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119(7):1806–13.  https://doi.org/10.1172/JCI38027.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Jahed Z, Shams H, Mehrbod M, Mofrad MR. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int Rev Cell Mol Biol. 2014;310:171–220.  https://doi.org/10.1016/B978-0-12-800180-6.00005-0.CrossRefPubMedGoogle Scholar
  216. 216.
    Olive M, Kley RA, Goldfarb LG. Myofibrillar myopathies: new developments. Curr Opin Neurol. 2013;26(5):527–35.  https://doi.org/10.1097/WCO.0b013e328364d6b1.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brenda Gerull
    • 1
    Email author
  • Sabine Klaassen
    • 2
  • Andreas Brodehl
    • 3
  1. 1.Department of Internal Medicine I, Comprehensive Heart Failure CenterUniversity Hospital WürzburgWürzburgGermany
  2. 2.Experimental and Clinical Research Center (ECRC)Max-Delbrück-Center for Molecular Medicine, Charité University Medicine BerlinBerlinGermany
  3. 3.Heart and Diabetes Centre NRWErich and Hanna Klessmann Institute, University Hospital of the Ruhr-University BochumBad OeynhausenGermany

Personalised recommendations