Glioma Imaging pp 139-159 | Cite as

Imaging Markers of Lower-Grade Diffuse Glioma

  • Melanie A. Morrison
  • Adam D. WaldmanEmail author


This chapter provides an overview of the current status of molecular and imaging markers in lower-grade glioma (LGG; diffuse glioma WHO grade II) management. We first review molecular markers acknowledged under the recent World Health Organization (WHO) diagnostic criteria that have enabled prognostic stratification of gliomas into distinct molecular subtypes. A discussion of current imaging markers follows, including surrogate markers of histological tumour grade and molecular features, and characteristics that aid in early detection of malignant transformation (MT).


Low-grade glioma Molecular biomarkers Quantitative imaging biomarkers Disease stratification Tissue characterisation Malignant transformation Early detection 


  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohagki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefGoogle Scholar
  2. 2.
    Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advances quantitative imaging methods. Cancer Manag Res. 2014;6:149–70.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Smits M, van den Bent M. Imaging correlates of adult glioma genotypes. Radiology. 2017;284(2):316–31.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14:284–97.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174(4):1149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sun H, Yin L, Li S, Han S, Song G, Liu N, Yan C. Prognostic significance of IDH mutation in low-grade gliomas: a meta-analysis. J Neuro-Oncol. 2013;113(2):277–84.CrossRefGoogle Scholar
  7. 7.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic Oligodendrogliomas. JNCI. 1998;90(19):1473–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W, Mehta M. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.PubMedCrossRefGoogle Scholar
  9. 9.
    van den Bent MJ, Brandes AA, Taphoorn MJB, Kros JM, Kouwenhoven MCM, Delattre JY, Bernsen HJJA, Frenay M, Tijssen CC, Grisold W, Sipos L, Enting RH, French PJ, Dinjens WNM, Vecht CJ, Allgeier A, Lacombe D, Gorlia T, Hoang-Xuan K. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–50.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Li YX, Shi Z, Aibaidula A, Chen H, Tang Q, Ka K, Li W, Chung NYF, Tat D, Chan M, Poon WS, Mao Y, Wu J, Zhou L, Chan AKY, Ng HK. Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget. 2016;40(7):64615–30.Google Scholar
  11. 11.
    Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Xheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372(26):2499–508.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nandakumar P, Mansouri A, Das S. The role of ATRX in glioma biology. Front Oncol. 2017;7:236.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ebrahimi A, Skardelly M, Bonzheim I, Ott I, Muhleisen H, Eckert F, Tabatabai G, Schittenhelm J. ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun. 2016;4:60.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jin Y, Xiao W, Song T, Feng G, Dai Z. Expression and prognostic significance of p53 in glioma patients: a meta-analysis. Neurochem Res. 2016;41(7):1723–31.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wang YY, Zhang T, Li SW, Qian TY, Fan X, Peng XX, Ma J, Wang L, Jiang T. Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysis. AJNR. 2015;36(1):70–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nakae S, Kato T, Murayama K, Sasaki H, Abe M, Kumon M, Kumai T, Yamashiro K, Inamasu J, Hasegawa M, Kurahashi H, Hirose Y. Remote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain. Oncotarget. 2017;8:84729–42.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Villanueva-Meyer JE, Wood MD, Choi B, Mabray MC, Butowski NA, Tihan T, Cha S. MRI features and IDH mutational status in grade II diffuse gliomas: impact on diagnosis and prognosis. AJR Am J Roentgenol. 2018;210(3):70–6.CrossRefGoogle Scholar
  18. 18.
    Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol. 1998;49(4):436–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Megyesi JF, Kachur E, Lee DH, Zlatescu MC, Betensky RA, Forsyth PA, Okada Y, Sasaki H, Mizoguchi M, Louis DN, Cairncross JG. Imaging correlates of molecular signatures in oligodendrogliomas. AACR. 2004;10(13):4303–6.Google Scholar
  20. 20.
    Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, Cairncross JG. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. AACR. 2001;61(18):6713–5.Google Scholar
  21. 21.
    Patel SH, Poisson LM, Brat DJ, Zhou Y, Cooper L, Snuderi M, Thomas C, Franceschi AM, Griffith B, Flanders AE, Golfinos JG, Chi AS, Jain R. T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res. 2017;23(20):6078–85.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Broen MPG, Smits M, Wijnenga MMJ, Dubbink HJ, Anten MHME, Schijns OEMG, Beckervordersandforth J, Postma AA, van den Bent MJ. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro-Oncology. 2018;20(10):1393–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2):563–77.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jakola AS, Zhang Y, Skjulsvik AJ, Solheim O, Bo HK, Bernsten EM, Reinertsen I, Gulati S, Forander P, Brismar TB. Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg. 2018;164:114–20.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bahrami N, Hartman SJ, Chang SJ, Delfanti R, White NS, Karunamuni R, Seibert TM, Dale AM, Hattangadi-Gluth JA, Piccioni D, Farid N, McDonald CR. Molecular classification of patients with grade II/II gliomas using quantitative MRI characteristics. J Neuro-Oncol. 2018;139(3):633–42.CrossRefGoogle Scholar
  26. 26.
    Zhou H, Vallieres M, Bai HX, Su C, Tang H, Oldridge D, Zhang Z, Xiao B, Liao W, Tao Y, Zhou J, Zhang P, Yang L. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-Oncology. 2017;19(6):862–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li Y, Qian Z, Xu K, Wang K, Fan X, Li S, Jiang T, Liu X, Wang Y. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin. 2017;17:306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012;67:157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology. 2013;266:177–84.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, Meagher M, Shortman RI, Wan S, Kayani I, Ell PJ, Groves AM. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:3591–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Lambin P, Leijenaar RTH, Diest TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.CrossRefGoogle Scholar
  32. 32.
    Jackson A, O’Connor J, Thompson G, Mills S. Magnetic resonance perfusion imaging in neuro-oncology. Cancer Imaging. 2008;8(1):186–99.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, Zhang W. Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges. Contrast Media Mol Imaging. 2017;2017:7064120.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Waldman A, Jackson A, Price SJ, Clark CA, Booth TC, Auer DP, Tofts PS, Collins DJ, Leach MO, Rees JH. Quantitative imaging biomarkers in neuro-oncology. Nat Review Clin Oncol. 2009;6(8):445–54.CrossRefGoogle Scholar
  35. 35.
    Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR. 2004;35:746–55.Google Scholar
  36. 36.
    Law M, Young R, Babb JS, Pollack E, Johnson G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR. 2007;28(4):761–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cha S, Tihan T, Crawford F, Fischbein NJ, Chang S, Bollen A, Nelson SJ, Prados M, Berger MS, Dillon WP. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volumes measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR. 2005;26:266–73.PubMedGoogle Scholar
  38. 38.
    Chawla Krejza J, Vossough A, Zhang Y, Kapoor GS, Wang S, O’Rourke DM, Melhem ER, Poptani H. Differentiation between oligo genotypes using dynamic susceptibility contrast perfusion-weighted imaging and proton MR spectroscopy. AJNR. 2013;34(8):1542–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jenkinson MD, Smith TS, Joyce KA, Fildes D, Broome J, du Plessis DG, Haylock B, Husband DJ, Warnke PC, Walker C. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology. 2006;48(10):703–13.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Soliman RK, Gamal SA, Essa AA, Othman MH. Preoperative grading of glioma using dynamic susceptibility contrast MRI: relative cerebral blood volume analysis of intra-tumoural and Peri-tumoural tissue. Clin Neurol Neurosurg. 2018;167:86–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Tan W, Xiong J, Huang W, Wu J, Zhan S, Geng D. Noninvasively detecting Isocitrate dehydrogenase 1 gene status in astrocytoma by dynamic susceptibility contrast MRI. JMRI. 2016;45(2):492–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Bisdas S, Kirkpatrick M, Giglio P, Welsh C, Spampinato MV, Rumbolt Z. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR. 2009;30(4):681–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR 4th, Fitzek MM, Chiocca EA, Rabinov JD, Csavoy AN, Rosen BR, Hochberg FH, Schaefer PW, Gonzalez RG. Glial tumor grading and outcome prediction using dynamic spin-echo Mr susceptibility mapping compared with conventional contrast-enhanced Mr: confounding effect of elevated rCBv of oligodendrogliomas [corrected]. AJNR Am J Neuroradiology. 2004;25:214–21.Google Scholar
  44. 44.
    Anzalone N, Castellano A, Cadioli M, Conte GM, Cuccarini V, Bizzi A, Grimaldi M, Costa A, Grillea G, Vitali P, Aquino D, Terreni MR, Torri V, Erickson BJ, Caulo M. Brain gliomas: multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Neuroradiology. 2018;287(3):944–3.Google Scholar
  45. 45.
    Zhao M, Guo L, Huang N, Wu Q, Zhou L, Zhao H, Zhang J, Fu K. Quantitative analysis of permeability for glioma grading using dynamic contrast-enhanced magnetic resonance imaging. Oncol Lett. 2017;14(5):5418–26.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Jain KK, Sahoo P, Tyagi R, Megta A, Patir R, Vaishya S, Prakash N, Vasudev N, Gupta RK. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI. Clin Radiol. 2015;70(10):1128–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Kong L, Chen H, Yang Y, Chen L. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol. 2017;72(3):255–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu T, Cheng G, Kang X, Xi Y, Zhi Y, Wang K, Sun C, Ye J, Li P, Yin H. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging. Neuroradiology. 2018;60(7):693–702.PubMedCrossRefGoogle Scholar
  49. 49.
    Brendle C, Hempel J, Schittenhelm J, Skardelly M, Tabatabai G, Bender B, Ernemann U, Klose U. Glioma grading and determination of IDH mutation status and ATRX loss by DCE and ASL perfusion. Clin Neuroradiol. 2018;28(3):421–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Sadeghi N, Camby I, Goldman S, Gabius HJ, Baleriaux D, Salmon I, Decaesteckere C, Kiss R, Metens T. Effect of hydrophilic components of the extracellular matrix on quantifiable diffusion-weighted imaging of human gliomas: preliminary results of correlating apparent diffusion coefficient values and hyaluronan expression level. AJR Am J Roentgenol. 2003;181:235–41.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bai Y, Lin Y, Tian J, Shi D, Cheng J, Haacke EM, Hong X, Ma B, Zhou J, Wang M. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology. 2016;278(2):496–504.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Fudaba H, Shimomura T, Abe T, Matsuta H, Momii Y, Sugita K, Ooba H, Kamida T, Hikawa T, Fujiki M. Comparison of multiple parameters obtained on 3T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR. 2014;35(11):2091–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, Tang X, Zhu W. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labelling for evaluation of tumor perfusion. J Magn Reson Imaging. 2016;44(3):620–32.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Server A, Graff BA, Josefsen R, Orheim TED, Schellhorn T, Nordhoy W, Nakstad PH. Analysis of diffusion tensor imaging metrics for gliomas grading at 3T. Eur J Radiol. 2014;83(3):e156–65.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Han H, Han C, Wi X, Zhong S, Zhuang X, Tan G, Wu H. Preoperative grading of supratentorial nonenhancing gliomas by high b-value diffusion-weighted 3T magnetic resonance imaging. J Neuro-Oncol. 2017;133(1):147–54.CrossRefGoogle Scholar
  56. 56.
    Tozer D, Danchaivitijr N, Tofts PSm Jäger HR, Rees JH, Waldman AD. Apparent diffusion coefficient histogram maps may predict low grade glioma subtype. NMR Biomed. 2007;20:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Khayal IS, McKnight TR, McGue C, Vandenberg S, Lamborn KR, Chang SM, Cha S, Nelson SJ. Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas. NMR Biomed. 2009;22(4):449–55.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Thust SC, Hassanein S, Bisdas S, Rees JH, Hyare H, Maynard JA, Brandner S, Tur C, Jager HR, Yousry TA, Mancini L. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis. Eur Radiol. 2018;28(9):3779–88.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wu CC, Jain R, Radmanesh A, Poisson LM, Guo WY, Zagzag D, Snuderl M, Placantonakis DG, Golfinos J, Chi AS. Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: a pilot study from the cancer genome atlas. AJNR. 2018;39(10):1814–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Leu K, Ott GA, Lai A, Nghiemphu PL, Pope WB, Yong WH, Liau LM, Cloughesy TF, Ellingson BM. Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas. J Neuro-Oncol. 2017;134(1):177–88.CrossRefGoogle Scholar
  61. 61.
    Hilario A, Ramos A, Perez-Nunez A, Salvador E, Millan JM, Lagares A, Sepulveda JM, Gonzalez-Leon P, Hernandez-Lain A, Ricoy JR. The added value of apparent diffusion coefficient to cerebral blood volume in preoperative grading of diffuse gliomas. AJNR. 2012;33(4):701–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Mannelli L, Nougaret S, Vargas HA, Do RKG. Advances in diffusion-weighted imaging. Radiol Clin N Am. 2015;53(3):569–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Mag Res Med. 2003;50(4):727–34.CrossRefGoogle Scholar
  64. 64.
    Raja R, Sinha N, Saini J, Mahadevan A, Rao KVLN, Swaminathan A. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology. 2016;58(12):1217–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Cao M, Suo S, Han X, Jin K, Sun Y, Wang Y, Ding W, Qu J, Zhang X, Zhou Y. Application of a simplified methods for estimating perfusion derived from diffusion-weighted MR imaging in glioma grading. Front Aging Neurosci. 2018;9:432.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hu YC, Yan L, Wu L, Du P, Chen B, Wang L, Wang S, Han Y, Tian Q, Yu Y, Xu T, Wang W, Cui G. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: efficacy in preoperative grading. Sci Rep. 2014;4:7208.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Davanian F, Faeghi F, Shahzadi S, Farshifar Z. Diffusion tensor imaging for glioma grading: analysis of fiber density index. Basic Clin Neurosci. 2017;8(1):13–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhao J, Li J, Wang J, Wang Y, Liu D, Li X, Song Y, Tian Y, Yan X, Li Z, He S, Huang X, Jiang L, Yang Z, Chu J. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status. Neuroimage Clin. 2018;19:174–81.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Horska A, Barker P. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR. 2003;24(10):1989–98.PubMedGoogle Scholar
  71. 71.
    Bian W, Khayal IS, Lupo JM, McGue C, Vandenberg S, Lamborn KR, Chang SM, Cha S, Nelson SJ. Multiparametric characterization of grade 2 glioma subtypes using magnetic resonance spectroscopic, perfusion, and diffusion imaging. Transl Oncol. 2009;2(4):271–80.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Toyooka M, Kimura H, Uematsu H, Kawamura Y, Takeuchi H, Itoh H. Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin Imaging. 2008;32(4):251–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Senft C, Hattingen E, Pilatus U, Franz K, Schanzer A, Lanfermann H, Seifert V, Gasser T. Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery. 2009;65(5):908–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Collet S, Valable S, Constans JM, Lechapt-Zalcman E, Roussel S, Delcroix N, Abbas A, Ibazizene M, Bernaudin M, Barre L, Derlon JM, Guillamo JS. [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. Neuroimage Clin. 2015;8:448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Andronesi OC, Rapalino O, Gerstner E, Chi A, Batchelor TT, Cahill DP, Sorensen AG, Rosen BR. Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest. 2013;123(9):3659–63.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Elkhaled A, Jaldbert LE, Phillips JJ, Yoshihara HA, Parvataneni R, Srinivasan R, Bourne G, Berger MS, Chang SM, Cha S, Nelson SJ. Magnetic Resonance 2-Hydroxyglutarate in IDH1-Mutated Low-Grade Gliomas. Sci Transl Med. 2012;4(116):116ra5.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, Yang XL, Mashimo T, Raisanen JM, Marin-Valencia I, Pascual JM, Madden CJ, Mickey BE, Malloy CR, Bachoo RM, Maher EA. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jalbert LE, Elkhaled A, Phillips JJ, Neill E, Williams A, Crane JC, Olson MP, Molinaro AM, Berger MS, Kurhanewicz J, Ronen SM, Chang SM, Nelson SJ. Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep. 2017;7:44792.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Challapalli A, Aboagye EO. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front Oncol. 2016;6:44.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995;195(1):47–52.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Salder D, Stoffels G, Pauleit D, Oros-Peusquens AM, Shah NJ, Klauth P, Hamacher K, Coenen HH, Langen KJ. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med. 2007;48(12):2056–62.CrossRefGoogle Scholar
  83. 83.
    Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13 Scholar
  84. 84.
    Popperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, Gildehaus FJ, Kretzschmar HA, Tonn JC, Tatsch K. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, Baum RP. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011;36(10):841–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, Todica A, Brendel M, Tonn JC, Bartenstein P, la Fougere C. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):1105–14.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Dunet V, Maeder P, Nicod-Lalonde M, Lhermitte B, Pollo C, Bloch J, Stupp R, Meuli R, Prior JO. Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin. 2014;53(4):155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Verger A, Filss CP, Lohmann P, Stoffels G, Sabel M, Wittsack HJ, Kops ER, Galldiks N, Fink GR, Shah NJ, Langen KJ. Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging. 2017;44(13):2257–65.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T, Dunkl V, Kocher M, Viswanathan S, Filss CP, Stegmayr C, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen K, Galldiks N. Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep. 2018;8:13328.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Saito T, Maruyma T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, Aki T, Iseki H, Kurisu K, Okada Y. 11C-methionine uptake correlations with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR. 2013;34(1):85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Iwadate Y, Shinozaki N, Matsutani T, Uchino Y, Saeki N. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography. J Neurol Neurosurg Psychiatry. 2016;87:1016–21.CrossRefGoogle Scholar
  92. 92.
    Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of 18F-FDG and 11C-methionine PET for differentiating brain tumors. AJNR. 2014;35(6):1058–65.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, Adhikarla V, Nye J, Schuster DM, Goodman MM. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res. 2018;8(1):67.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bogdanska MU, Bodnar M, Piotrowska MJ, Murek M, Schucht P, Beck J, Martinez-Gonzalez A, Perez-Garcia VM. A mathematical model describes the malignant transformation of low grade gliomas: prognostic implications. PLoS One. 2017;12(8):e0179999.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, Vandenberg S, McDermott MW, Berger MS. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jakola AS, Unsgard G, Myrmel KS, Kloster R, Torp SH, Losvik OK, Lindal S, Solheim O. Surgical strategy in grade II astrocytoma: a population-based analysis of survival and morbidity with a strategy of early resection as compared to watchful waiting. Acta Neurochir. 2013;155(12):2227–35.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wijnenga MMJ, Mattni T, French PJ, Rutten GJ, Leenstra S, Kloet F, Taphoorn MJB, van den Bent MJ, Dirven CMF, van Veelen M, Vincent AJPE. Does early resection of presumed low-grade glioma improve survival? A clinical perspective. J Neuro-Oncol. 2017;113(1):137–46.CrossRefGoogle Scholar
  98. 98.
    van der Sanden B, Ratel D, Berger F, Wion D. Glioma recurrence following surgery: peritumoral or perilesional? Front Neurol. 2016;7:52.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Raizer J, Dixit K. New strategies for the management of low-grade gliomas. Oncology. 2017;31(9):680–2, 684–5.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Murphy E, Leyrer CM, Parsons M, Suh J, Chao S, Yu J, Jia X, Peereboom D, Stevens G, Ahluwalia MS. RTHP-31. Low grade glioma malignant transformation (MT): clinical outcomes and prognostic factors in temozolomide era. Neuro-Oncology. 2016;18(6):vi180. CrossRefGoogle Scholar
  101. 101.
    Chaichana K, McGirt MJ, Laterra J, Oliv A, Quiñones-Hinojosa A. Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. J Neurosurg. 2010;112(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Pallud J, Capelle L, Taillandier L, Fontaine D, Mandonnet E, Guillevin R, Bauchet L, Peruzzi P, Laigle-Donadey F, Kujas M, Guyotat J, Baron M, Mokhtari K, Duffau H. Prognostic significance of imaging contrast enhancement for WHO grade II gliomas. Neuro-Oncology. 2009;11(2):176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bobek-Billewicz B, Stasik-Pres G, Hebda A, Majchrzak K, Kaspera W, Jurowski M. Anaplastic transformation of low-grade gliomas (WHO II) on magnetic resonance imaging. Folia Neuropathol. 2014;52(2):128–40.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Rees J, Watt H, Jager HR, Benton C, Tozer D, Tofts P, Waldman A. Volumes and growth rates of untreated adult low-grade gliomas indicate risk of early malignant transformation. Eur J Radiol. 2009;72(1):54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Brasil Caseiras G, Ciccarelli O, Altmann DR, Benton CE, Tozer DJ, Tofts PS, Yousry TA, Rees J, Waldman AD, Jager HR. Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology. 2009;253(2):505–12.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hathout L, Pope WB, Lai A, Nghiemphu PL, Cloughesy TF, Ellingson BM. Radial expansion rates and tumor growth kinetics predict malignant transformation in contrast-enhancing low-grade diffuse astrocytoma. CNS Oncol. 2015;4(4):247–56.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Caseiras GB, Tofts PS, Rees JH, Jager HR. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1):170–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247(2):490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Maia ACM, Malheiros SMF, da Rocha AJ, da Silva CJ, Gabbai AA, Ferraz FAP, Stavale JN. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR. 2005;26(4):777–83.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Chen X, Jiang J, Shen N, Zhao L, Zhang J, Qin Y, Zhang S, Li L, Zhu W. Stretched-exponential model diffusion-weighted imaging as a potential imaging marker in preoperative grading and assessment of proliferative activity in gliomas. Am J Transl Res. 2018;10(8):2659–68.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bulik M, Jancalek R, Vanicek J, Skoch A, Mechl M. Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg. 2013;115(2):146–53.PubMedCrossRefGoogle Scholar
  112. 112.
    Freitag MT, Maier-Hein KH, Binczyk F, Laun FB, Weber C, Bonekamp D, Tarnawski R, Bobek-Billewicz B, Polanska J, Majchrzak H, Stieltjes B. Early detection of malignant transformation in resected WHO II low-grade glioma using diffusion tensor-derived quantitative measures. PLoS One. 2016;11(10):e0164679.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yin H, Parmar HA, Yeo TT, Tan SH, Lim CCT. Malignant transformation of oligodendroglioma: MR spectroscopy and diffusion-weighted MR imaging features. Eur J Radiol Extra. 2004;49(1):1–6.CrossRefGoogle Scholar
  114. 114.
    Jalbert LE, Neill E, Phillips JJ, Lupo JM, Olson MP, Molinaro AM, Berger MS, Chang SM, Nelson SJ. Magnetic resonance analysis of malignant transformation in recurrent glioma. Neuro-Oncology. 2016;18(8):1169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ru P, William TM, Chakravarti A, Guo D. Tumor metabolism of malignant gliomas. Cancers. 2013;5:1469–84.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC. Prediction of pathology and survival by FDG PET in gliomas. J Neuro-Oncol. 2003;64(3):227–37.CrossRefGoogle Scholar
  117. 117.
    Ghany AFA, Hamed MAG. The diagnostic value of dual phase FDG PET CT in grading of gliomas. Egyptian J Radiol Nuclear Med. 2015;46(3):701–5.CrossRefGoogle Scholar
  118. 118.
    De Witte O, Lefranc F, Levivier M, Salmon I, Brotchi J, Goldman S. FDG-PET as a prognostic factor in high-grade astrocytoma. J Neuro-Oncol. 2009;49(2):157–63.CrossRefGoogle Scholar
  119. 119.
    Seiz M, Dimitrakopoulou-Strauss A, Schubert GA, Weinmann C, Strauss LG, Eisenhut M, Tuettenberg J. Differentiation between malignant transformation and tumour recurrence by (68)Ga-bombesin and (18)F-FDG-PET, in patients with low grade gliomas. Hell J Nucl Med. 2008;11(3):149–52.Google Scholar
  120. 120.
    Bashir A, Brennum J, Broholm H, Law I. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[18F]fluoroethyl)-I-tyrosine positron emission tomography: a retrospective study. J Neurosurg. 2018;6:1–14.Google Scholar
  121. 121.
    Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schid-Tannwald C, Zwergal A, Niyazi M, Drexler M, Bartenstein P, Schnell O, Jorg-Christian T, Thon N, Kreth F, la Fougere C. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ledezma CJ, Chen W, Sai V, Freitas B, Cloughesy T, Czernin J, Pope W. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol. 2009;71(2):242–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, Gupta DK, Malhotra A, Bal C. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40(7):1025–35.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Villani V, Carapella CM, Chiaravalloti A, Terrenato I, Piludu F, Vidiri A, Schillaci O, Floris R, Marzi S, Fabi A, Pace A. The role of PET [18F]FDOPA in evaluating low-grade glioma. Anticancer Res. 2015;35(9):5117–22.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, Schiepers C, Nghiemphu P, Lai A, Phelps ME, Chen W. Correlation of 6- F-Fluoro-L-Dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51(10):1532–8.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Xu Z, Li X, Zou H, Sun X, Shen B. 18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget. 2017;8(55):94969–79.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Wharton SB, Maltby E, Jellinek DA, Levy D, Atkey N, Hibberd S, Crimmins D, Stoeber K, Williams GH. Subtypes of oligodendroglioma defined by 1p,19q deletions, differ in the proportion of apoptotic cells but not in replication-licensed non-proliferating cells. Acta Neuropathol. 2007;113(2):119–27.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Imaging at UCSFSan FranciscoUSA
  2. 2.Centre for Clinical Brain Sciences, University of EdinburghEdinburghScotland, UK
  3. 3.Department of MedicineImperial College LondonLondonUK

Personalised recommendations