Advertisement

Glioma Imaging pp 251-265 | Cite as

Immunotherapy and Gliomas

  • Elise Wang
  • Robert J. YoungEmail author
  • Ankush Bhatia
Chapter

Abstract

Immunotherapy is an advancing field that uses the patient’s own immune system to recognize, target, and treat certain diseases including cancers. Fundamentally different from conventional chemotherapy and radiation therapy, this method represents a promising novel therapy option for patients with brain gliomas. In recognition that this field is rapidly changing and that many clinical trials are still ongoing, the purpose of this chapter is to introduce the different types of immunotherapy and the proposed mechanisms of action. We will then discuss the implications of these treatments on imaging with a focus on the problem of pseudoprogression.

Keywords

Glioma Immunotherapy Antitumor immunity Pseudoprogression Imaging 

References

  1. 1.
    Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm. 2011;26(1):1–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nduom EK, Weller M, Heimberger AB. Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology. 2015;17 Suppl 7:vii9–vii14.PubMedCrossRefGoogle Scholar
  5. 5.
    Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am. 2010;21(1):31–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol Today. 1991;12(10):370–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Chae M, Peterson TE, Balgeman A, Chen S, Zhang L, Renner DN, et al. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology. 2015;17(7):978–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006;66(6):3294–302.PubMedCrossRefGoogle Scholar
  9. 9.
    Ooi YC, Tran P, Ung N, Thill K, Trang A, Fong BM, et al. The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg. 2014;119:125–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19(12):3165–75.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology. 2010;12(4):351–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9(4):447–53.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jackson CM, Kochel CM, Nirschl CJ, Durham NM, Ruzevick J, Alme A, et al. Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin Cancer Res. 2016;22(5):1161–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest. 2005;85(3):328–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63(21):7462–7.PubMedGoogle Scholar
  16. 16.
    El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology. 2006;8(3):234–43.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol. 2006;18(2):206–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.PubMedCrossRefGoogle Scholar
  20. 20.
    Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(25):2980–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ivashko IN, Kolesar JM. Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am J Health Syst Pharm. 2016;73(4):193–201.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96.PubMedGoogle Scholar
  23. 23.
    Xue S, Hu M, Iyer V, Yu J. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol. 2017;10(1):81.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Huard B, Mastrangeli R, Prigent P, Bruniquel D, Donini S, El-Tayar N, et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci U S A. 1997;94(11):5744–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Goldberg MV, Drake CG. LAG-3 in Cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016;54:112–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther. 2012;11(5):1062–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol. 2009;157(1):9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Myers L, Lee SW, Rossi RJ, Lefrancois L, Kwon BS, Mittler RS, et al. Combined CD137 (4-1BB) and adjuvant therapy generates a developing pool of peptide-specific CD8 memory T cells. Int Immunol. 2006;18(2):325–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother. 2016;65(10):1243–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6:47.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Maus MV, Levine BL. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist. 2016;21(5):608–17.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol. 1999;163(10):5358–66.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yu S, Li A, Liu Q, Li T, Yuan X, Han X, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10(1):78.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Love PE, Hayes SM. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol. 2010;2(6):a002485.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280(21):5350–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Sampson JH, Mitchell DA. Vaccination strategies for neuro-oncology. Neuro-Oncology. 2015;17 Suppl 7:vii15–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother. 2013;36(2):152–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brown MC, Holl EK, Boczkowski D, Dobrikova E, Mosaheb M, Chandramohan V, et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med. 2017;9(408).PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro-Oncology. 2018;20(10):1383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8(341):341ra75.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Strebe JK, Lubin JA, Kuo JS. “Tag team” Glioblastoma therapy: results from a phase 1 trial of toca 511 and 5-fluorocytosine for recurrent high-grade glioma. Neurosurgery. 2016;79(6):N18–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.CrossRefGoogle Scholar
  52. 52.
    Li H, Li J, Cheng G, Zhang J, Li X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg. 2016;151:31–6.CrossRefGoogle Scholar
  53. 53.
    Roldan GB, Scott JN, McIntyre JB, Dharmawardene M, de Robles PA, Magliocco AM, et al. Population-based study of pseudoprogression after chemoradiotherapy in GBM. Can J Neurol Sci. 2009;36(5):617–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Sanghera P, Perry J, Sahgal A, Symons S, Aviv R, Morrison M, et al. Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci. 2010;37(1):36–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol. 2015;6:33.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.PubMedCrossRefGoogle Scholar
  59. 59.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–e42.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sahebjam S, Stallworth DG, Mokhtari S, Tran ND, Arrington JA. Assessing response of high-grade gliomas to immune checkpoint inhibitors. Cancer Control. 2017;24(2):180–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Vrabec M, Van Cauter S, Himmelreich U, Van Gool SW, Sunaert S, De Vleeschouwer S, et al. MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology. 2011;53(10):721–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Ranjan S, Quezado M, Garren N, Boris L, Siegel C, Lopes Abath Neto O, et al. Clinical decision making in the era of immunotherapy for high grade-glioma: report of four cases. BMC Cancer. 2018;18(1):239.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gordon Y, Partovi S, Muller-Eschner M, Amarteifio E, Bauerle T, Weber MA, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther. 2014;4(2):147–64.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Floeth FW, Wittsack HJ, Engelbrecht V, Weber F. Comparative follow-up of enhancement phenomena with MRI and Proton MR Spectroscopic Imaging after intralesional immunotherapy in glioblastoma--Report of two exceptional cases. Zentralbl Neurochir. 2002;63(1):23–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Faje AT, Sullivan R, Lawrence D, Tritos NA, Fadden R, Klibanski A, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99(11):4078–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Radiology and the Brain Tumor CenterMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Department of Neurology and the Brain Tumor CenterMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations