Glioma Imaging pp 161-172 | Cite as

CEST, pH, and Glucose Imaging as Markers for Hypoxia and Malignant Transformation

  • Daniel PaechEmail author
  • Alexander Radbruch


Chemical exchange saturation transfer (CEST) is an increasingly applied noninvasive MR imaging technique with a fast-growing body of evidence supporting its diagnostic value in neuro-oncology. CEST contrasts are based on the spontaneous chemical exchange between solute-bound protons and protons of free water that to a large extent depend on the concentration of endogenous cellular proteins. Furthermore, CEST signals are sensitive to the tissue microenvironment, including various metabolite concentrations, pH, and regional glucose concentration following intravenous administration. Therefore, CEST MRI may add valuable information in the diagnostic work-up of glioma patients prior to invasive procedures and in the follow-up setting for therapy monitoring. CEST MRI has recently been applied in various diseases, both in preclinical and human studies. The following chapter focuses on CEST applications in human glioma.


Chemical exchange saturation transfer (CEST) Amide proton transfer (APT) Nuclear Overhauser effect (NOE) GlucoCESTGlucoCESLpHMR biomarkers 


  1. 1.
    Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143:79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65:927–48.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bryant RG. The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct. 1996;25:29–53.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zhou J, Payen J-F, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61:1441–50.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Windschuh J, Zaiss M, Meissner JE, et al. Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. NMR Biomed. 2015;28:529–37.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhou J, Hong X, Zhao X, Gao J-H, Yuan J. APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med. 2013;70:320–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Paech D, Zaiss M, Meissner J-E, et al. Nuclear Overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One. 2014;9:e104181.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zaiss M, Xu J, Goerke S, et al. Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI – application to pH-weighted MRI of acute stroke. NMR Biomed. 2014;27:240–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Moritz Z, Peter B. Chemical exchange saturation transfer (CEST) and MR Z -spectroscopy in vivo : a review of theoretical approaches and methods. Phys Med Biol. 2013;58:R221.CrossRefGoogle Scholar
  11. 11.
    Zaiss M, Zu Z, Xu J, et al. A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer. NMR Biomed. 2015;28:217–30.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zaiss M, Windschuh J, Goerke S, et al. Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med. 2017;77:196–208.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jones CK, Huang A, Xu J, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage. 2013;77:114–24.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zaiss M, Windschuh J, Paech D, et al. Relaxation-compensated CEST-MRI of the human brain at 7 T: unbiased insight into NOE and amide signal changes in human glioblastoma. NeuroImage. 2015;112:180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zaiß M, Schmitt B, Bachert P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson. 2011;211:149–55.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MRZ-spectroscopyin vivo: a review of theoretical approaches and methods. Phys Med Biol. 2013;58:R221–69.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zu Z. Towards the complex dependence of MTRasym on T1w in amide proton transfer (APT) imaging. NMR Biomed. 2018;31:e3934.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50:1120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jones CK, Schlosser MJ, van Zijl PCM, Pomper MG, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56:585–92.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wen Z, Hu S, Huang F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. NeuroImage. 2010;51:616–22.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging. 2003;18:530–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Regnery S, Adeberg S, Dreher C, et al. Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget. 2018;9:28772–83.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Goerke S, Milde KS, Bukowiecki R, et al. Aggregation-induced changes in the chemical exchange saturation transfer (CEST) signals of proteins. NMR Biomed. 2017;30(1):e3665-n/a.CrossRefGoogle Scholar
  24. 24.
    Yan K, Fu Z, Yang C, et al. Assessing Amide Proton Transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol. 2015;17:479–87.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Goerke S, Zaiss M, Kunz P, et al. Signature of protein unfolding in chemical exchange saturation transfer imaging. NMR Biomed. 2015;28:906–13.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zaiss M, Kunz P, Goerke S, Radbruch A, Bachert P. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed. 2013;26:1815–22.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology. 2014;16:441–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bai Y, Lin Y, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget. 2017;8:5834–42.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sakata A, Okada T, Yamamoto A, et al. Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol. 2015;122:339–48.CrossRefGoogle Scholar
  30. 30.
    Choi YS, Ahn SS, Lee S-K, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol. 2017;27:3181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Togao O, Hiwatashi A, Yamashita K, et al. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol. 2017;27:578–88.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Su C, Liu C, Zhao L, et al. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: comparison with Ki-67 expression and proton MR spectroscopy imaging. Am J Neuroradiol. 2017;38:1702–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jiang S, Eberhart CG, Zhang Y, et al. Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer. 2017;83:9–18.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dreher C, Oberhollenzer J, Meissner J-E, et al. Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imag. 2019;49(3):777–85.CrossRefGoogle Scholar
  35. 35.
    Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multi-pool CEST MRI at 7.0 Tesla. Neuro Oncol. 2018;20(12):1661–71.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Heo H-Y, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging. 2016;44:41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Paech D, Burth S, Windschuh J, et al. Nuclear Overhauser enhancement imaging of glioblastoma at 7 tesla: region specific correlation with apparent diffusion coefficient and histology. PLoS One. 2015;10:e0121220.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18:624.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neuro-Oncol. 2012;107:197–205.CrossRefGoogle Scholar
  41. 41.
    Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn Reson Med. 2017;78:1100–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jiang S, Rui Q, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur Radiol. 2018;28(5):2115–23.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Oue N, Shigeishi H, Kuniyasu H, et al. Promoter hypermethylation of MGMT is associated with protein loss in gastric carcinoma. Int J Cancer. 2001;93:805–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.CrossRefGoogle Scholar
  47. 47.
    de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63:535–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130–4.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hong X, Liu L, Wang M, et al. Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro-Oncology. 2014;16:856–67.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sagiyama K, Mashimo T, Togao O, et al. In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A. 2014;111:4542–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol. 2016;26:4390–403.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Park JE, Kim HS, Park KJ, Kim SJ, Kim JH, Smith SA. Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology. 2016;278:514–23.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Evaluation of glioblastoma response to therapy with chemical exchange saturation transfer. Int J Radiat Oncol Biol Phys. 2018;101:713–23.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Meissner J-E, Korzowski A, Regnery S, et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn Reson Imaging. 2019. Scholar
  55. 55.
    Paech D, Dreher C, Regnery S, et al. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in highgrade glioma patients. Eur Radiol. 2019;29(9):4957–67.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kanda T, Osawa M, Oba H, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275:803–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Radbruch A, Haase R, Kickingereder P, et al. Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology. 2017;283:828–36.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Thomsen HS, Morcos SK, Almén T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2012;23:307–18.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chan KWY, McMahon MT, Kato Y, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med. 2012;68:1764–73.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep. 2013;3.Google Scholar
  65. 65.
    Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067–72.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jin T, Mehrens H, Hendrich KS, Kim S-G. Mapping brain glucose uptake with chemical exchange-sensitive spin-lock magnetic resonance imaging. J Cereb Blood Flow Metab. 2014;34:1402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Schuenke P, Koehler C, Korzowski A, et al. Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med. 2017;78:215–25.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Paech D, Schuenke P, Koehler C, et al. T1ρ-weighted dynamic glucose-enhanced MR imaging in the human brain. Radiology. 2017;285:914–22.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Schuenke P, Paech D, Koehler C, et al. Fast and quantitative T1ρ-weighted dynamic glucose enhanced MRI. Sci Rep. 2017;7:42093.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Xu X, Yadav NN, Knutsson L, et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography. 2015;1:105.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tao J, Bistra I, Kevin HT, et al. Chemical exchange–sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med. 2018;80:488–95.CrossRefGoogle Scholar
  72. 72.
    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro-Oncology. 2015;18:160–72.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27:683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Nakanishi H, Cruz NF, Adachi K, Sokoloff L, Dienel GA. Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose. J Cereb Blood Flow Metab. 1996;16:439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jin T, Mehrens H, Wang P, Kim S-G. Glucose metabolism-weighted imaging with chemical exchange-sensitive MRI of 2-deoxyglucose (2DG) in brain: sensitivity and biological sources. NeuroImage. 2016;143:82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sehgal AA, Li Y, Lal B, et al. CEST MRI of 3-O-methyl-D-glucose uptake and accumulation in brain tumors. Magn Reson Med. 2019;81(3):1993–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zu Z, Jiang X, Xu J, Gore JC. Spin-lock imaging of 3-o-methyl-D glucose (3oMG) in brain tumors. Magn Reson Med. 2018;80:1110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H (+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Phys Cell Phys. 1993;265:C1015–29.CrossRefGoogle Scholar
  83. 83.
    Sennoune SR, Bakunts K, Martínez GM, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Phys Cell Phys. 2004;286:C1443–52.CrossRefGoogle Scholar
  84. 84.
    Harguindey S, Orive G, Pedraz JL, Paradiso A, Reshkin SJ. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature. Biochim Biophys Acta. 2005;1756:1–24.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Di Cristofori A, Ferrero S, Bertolini I, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Miraglia E, Viarisio D, Riganti C, Costamagna C, Ghigo D, Bosia A. Na+/H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. Int J Cancer. 2005;115:924–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Chiang Y, Chou CY, Hsu KF, Huang YF, Shen MR. EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness. J Cell Physiol. 2008;214:810–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cong D, Zhu W, Shi Y, et al. Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H+ extrusion, cell migration and survival. Carcinogenesis. 2014;35:2014–24.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chiche J, Ilc K, Laferrière J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69:358–68.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Swietach Á, Hulikova A, Vaughan-Jones R, Harris A. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene. 2010;29:6509.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Miranda-Goncalves V, Honavar M, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2012;15:172–88.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. Biomed Res Int. 2010;2010:427694.Google Scholar
  93. 93.
    Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    DeBrosse C, Nanga RPR, Bagga P, et al. Lactate chemical exchange saturation transfer (LATEST) imaging in vivo: a biomarker for LDH activity. Sci Rep. 2016;6:19517.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wenger KJ, Hattingen E, Franz K, Steinbach JP, Bähr O, Pilatus U. Intracellular pH measured by 31P-MR-spectroscopy might predict site of progression in recurrent glioblastoma under antiangiogenic therapy. J Magn Reson Imaging. 2017;46:1200–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev. 2014;33:1095–108.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huber V, De Milito A, Harguindey S, et al. Proton dynamics in cancer. J Transl Med. 2010;8:57.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11:671.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncology. 2015;17:1514–24.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Martínez-Zaguilán R, Seftor EA, Seftor RE, Chu Y-W, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis. 1996;14:176–86.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61:6020–4.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Griffiths L, Dachs GU, Bicknell R, Harris AL, Stratford IJ. The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res. 1997;57:570–2.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Freeman M, Sierra E. An acidic extracellular environment reduces the fixation of radiation damage. Radiat Res. 1984;97:154–61.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Reichert M, Steinbach JP, Supra P, Weller M. Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis: a new look at the efficacy of nitrosoureas. Cancer. 2002;95:1113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lagadic-Gossmann D, Huc L, Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 2004;11:953.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed. 2002;15:18–27.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Sun PZ, Benner T, Copen WA, Sorensen AG. Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke. 2010;41:S147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bodet O, Goerke S, Behl NG, Roeloffs V, Zaiss M, Bachert P. Amide proton transfer of carnosine in aqueous solution studied in vitro by WEX and CEST experiments. NMR Biomed. 2015;28:1097–103.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Harris RJ, Cloughesy TF, Liau LM, et al. Simulation, phantom validation, and clinical evaluation of fast pH-weighted molecular imaging using amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) in glioma at 3 T. NMR Biomed. 2016;29:1563–76.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Souba WW. Glutamine and cancer. Ann Surg. 1993;218:715–28.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kovačević Z, Morris HP. The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res. 1972;32:326–33.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.German Cancer Research Center (DKFZ), Division of RadiologyHeidelbergGermany
  2. 2.University Hospital Essen, Department of Diagnostic and Interventional Radiology and NeuroradiologyEssenGermany

Personalised recommendations