Glioma Imaging pp 1-15 | Cite as
Indications and Limitations of Conventional Imaging – Current Clinical Practice in the Context of Standard Therapy
Chapter
First Online:
Abstract
Imaging has critical roles in the management of glioma; MRI is routinely performed for initial diagnostic evaluation, preoperative planning, and posttreatment monitoring for tumor recurrence. In this chapter, standard therapy for high- and low-grade gliomas is outlined with emphasis on how imaging contributes to various stages of treatment. Limitations of conventional imaging techniques for these roles are also discussed to highlight the need of developing advanced imaging methods to overcome these limitations.
Keywords
Glioblastoma HGG LGG Pseudoprogression Pseudoresponse MRI RANOReferences
- 1.Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology. 2018;20(suppl_4):iv1–86.PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Schiff D, Lee EQ, Nayak L, Norden AD, Reardon DA, Wen PY. Medical management of brain tumors and the sequelae of treatment. Neuro-Oncology. 2015;17(4):488–504.PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Louis D, Ohgaki H, Wiestler O, Cavenee W. WHO classification of tumours of the central nervous system [internet], vol. 1. 4th ed. France: International Agency for Research on Cancer; 2016. [cited 2018 May 9]. Available from: http://publications.iarc.fr/Book-And-Report-Series/Who-Iarc-Classification-Of-Tumours/Who-Classification-Of-Tumours-Of-The-Central-Nervous-System-2016.Google Scholar
- 4.Wen PY, Kesari S. Malignant Gliomas in adults. N Engl J Med. 2008;359(5):492–507.PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Wangaryattawanich P, Hatami M, Wang J, Thomas G, Flanders A, Kirby J, et al. Multicenter imaging outcomes study of the cancer genome atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro-Oncology. 2015;17(11):1525–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Dardis C, Milton K, Ashby L, Shapiro W. Leptomeningeal metastases in high-grade adult glioma: development, diagnosis, management, and outcomes in a series of 34 patients. Front Neurol. 2014;5:220.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Peña A, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am J Neuroradiol. 2006;27(9):1969–74.PubMedPubMedCentralGoogle Scholar
- 9.Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.CrossRefGoogle Scholar
- 10.Ebisu T, Tanaka C, Umeda M, Kitamura M, Naruse S, Higuchi T, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging. 1996;14(9):1113–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Butler AR, Horii SC, Kricheff II, Shannon MB, Budzilovich GN. Computed tomography in astrocytomas. A statistical analysis of the parameters of malignancy and the positive contrast-enhanced CT scan. Radiology. 1978;129(2):433–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Burger PC, Heinz ER, Shibata T, Kleihues P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg. 1988;68(5):698–704.PubMedCrossRefPubMedCentralGoogle Scholar
- 13.Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, et al. Gliomas: classification with MR imaging. Radiology. 1990;174(2):411–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 14.Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefGoogle Scholar
- 15.Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: arandomized clinical trial. JAMA. 2017;318(23):2306–16.PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg. 2012;117(6):1032–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Ellingson BM, Abrey LE, Nelson SJ, Kaufmann TJ, Garcia J, Chinot O, et al. Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma. Neuro-Oncology. 2018;20(9):1240–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Tate MC. Surgery for gliomas. Cancer Treat Res. 2015;163:31–47.PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Pillai JJ. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31(2):219–25.PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Albert FK, Forsting M, Sartor K, Adams HP, Kunze S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34(1):45–60; discussion 60–61.PubMedPubMedCentralGoogle Scholar
- 22.Forsting M, Albert FK, Kunze S, Adams HP, Zenner D, Sartor K. Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. AJNR Am J Neuroradiol. 1993;14(1):77–87.PubMedPubMedCentralGoogle Scholar
- 23.Bette S, Gempt J, Huber T, Boeckh-Behrens T, Ringel F, Meyer B, et al. Patterns and time dependence of unspecific enhancement in postoperative magnetic resonance imaging after glioblastoma resection. World Neurosurg. 2016;90:440–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Lescher S, Schniewindt S, Jurcoane A, Senft C, Hattingen E. Time window for postoperative reactive enhancement after resection of brain tumors: less than 72 hours. Neurosurg Focus. 2014;37(6):E3.PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery. 2012;70(1):234–43; discussion 243–4.PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Quigley MR. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and influence on regrowth and prognosis. Neurosurgery. 1994;34(6):1105.PubMedPubMedCentralGoogle Scholar
- 27.Nabors LB, Portnow J, Ammirati M, Baehring J, Brem H, Butowski N, et al. NCCN guidelines insights: central nervous system cancers, version 1.2017. J Natl Compr Cancer Netw. 2017;15(11):1331–45.CrossRefGoogle Scholar
- 28.Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Han K, Ren M, Wick W, Abrey L, Das A, Jin J, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro-Oncology. 2014;16(5):696–706.PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Wick W, Chinot OL, Bendszus M, Mason W, Henriksson R, Saran F, et al. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology. 2016;18(10):1434–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):453–61.PubMedCrossRefGoogle Scholar
- 33.Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery. 1997;41(1):44–8; discussion 48–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Radbruch A, Fladt J, Kickingereder P, Wiestler B, Nowosielski M, Bäumer P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro-Oncology. 2015;17(1):151–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Linhares P, Carvalho B, Figueiredo R, Reis RM, Vaz R. Early pseudoprogression following chemoradiotherapy in glioblastoma patients: the value of RANO evaluation. J Oncol. 2013;2013:690585.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76(22):1918–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Yoo R-E, Choi SH, Kim TM, Lee S-H, Park C-K, Park S-H, et al. Independent poor prognostic factors for true progression after radiation therapy and concomitant temozolomide in patients with glioblastoma: subependymal enhancement and low ADC value. AJNR Am J Neuroradiol. 2015;36(10):1846–52.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma–are we there yet? Neuro-Oncology. 2013;15(1):4–27.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.CrossRefGoogle Scholar
- 43.Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28(17):2817–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Batchelor TT, Sorensen AG, di Tomaso E, Zhang W-T, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neuro-Oncol. 2009;92(2):149–55.CrossRefGoogle Scholar
- 46.Huang RY, Rahman R, Ballman KV, Felten S, Anderson K, Ellingson BM, et al. The impact of T2/FLAIR evaluation per RANO criteria on response assessment of recurrent glioblastoma patients treated with bevacizumab. Clin Cancer Res. 2015;22(3):575–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Radbruch A, Lutz K, Wiestler B, Bäumer P, Heiland S, Wick W, et al. Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the response assessment in neurooncology criteria. Neuro-Oncology. 2012;14(2):222–9.PubMedCrossRefGoogle Scholar
- 48.Nowosielski M, Ellingson BM, Chinot OL, Garcia J, Revil C, Radbruch A, et al. Radiologic progression of glioblastoma under therapy – an exploratory analysis of AVAglio. NeuroOncol. 2017;20(4):557–66.Google Scholar
- 49.Nowosielski M, Wiestler B, Goebel G, Hutterer M, Schlemmer HP, Stockhammer G, et al. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology. 2014;82(19):1684–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Cachia D, Elshafeey NA, Kamiya-Matsuoka C, Hatami M, Alfaro-Munoz KD, Mandel JJ, et al. Radiographic patterns of progression with associated outcomes after bevacizumab therapy in glioblastoma patients. J Neurooncol. 2017;135(1):75–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 51.Gahrmann R, van den Bent M, van der Holt B, Vernhout RM, Taal W, Vos M, et al. Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab-a report from the BELOB trial. Neuro-Oncology. 2017;19(6):853–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus Procarbazine, CCNU, and vincristine in low-grade Glioma. N Engl J Med. 2016;374(14):1344–55.PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45.PubMedCrossRefPubMedCentralGoogle Scholar
- 54.McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery. 2008;63(4):700–7; author reply 707–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Wijnenga MMJ, French PJ, Dubbink HJ, Dinjens WNM, Atmodimedjo PN, Kros JM, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro-Oncology. 2018;20(1):103–12.PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-Oncology. 2014;16(1):81–91.PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Kawaguchi T, Sonoda Y, Shibahara I, Saito R, Kanamori M, Kumabe T, et al. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neuro-Oncol. 2016;129(3):505–14.CrossRefGoogle Scholar
- 58.Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103(6):1227–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Ius T, Isola M, Budai R, Pauletto G, Tomasino B, Fadiga L, et al. Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients. J Neurosurg. 2012;117(6):1039–52.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Krishnan R, Raabe A, Hattingen E, Szelényi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14; discusssion 914–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 61.Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahlbusch R. Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery. 2004;55(2):358–70; discussion 370–1.PubMedCrossRefPubMedCentralGoogle Scholar
- 62.Duffau H. Mapping the connectome in awake surgery for gliomas: an update. J Neurosurg Sci. 2017;61(6):612–30.PubMedPubMedCentralGoogle Scholar
- 63.Shaw EG, Berkey B, Coons SW, Bullard D, Brachman D, Buckner JC, et al. Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg. 2008;109(5):835–41.PubMedCrossRefPubMedCentralGoogle Scholar
- 64.van den Bent MJ, Afra D, de Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet. 2005;366(9490):985–90.PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Karim ABMF, Afra D, Cornu P, Bleehan N, Schraub S, De Witte O, et al. Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council study BRO4: an interim analysis. Int J Radiat Oncol Biol Phys. 2002;52(2):316–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 66.Mandonnet E, Delattre J-Y, Tanguy M-L, Swanson KR, Carpentier AF, Duffau H, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53(4):524–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 67.Rees J, Watt H, Jäger HR, Benton C, Tozer D, Tofts P, et al. Volumes and growth rates of untreated adult low-grade gliomas indicate risk of early malignant transformation. Eur J Radiol. 2009;72(1):54–64.PubMedCrossRefPubMedCentralGoogle Scholar
- 68.van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJB, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583–93.PubMedCrossRefPubMedCentralGoogle Scholar
- 69.White ML, Zhang Y, Kirby P, Ryken TC. Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? AJNR Am J Neuroradiol. 2005;26(4):784–90.PubMedPubMedCentralGoogle Scholar
- 70.Brasil Caseiras G, Ciccarelli O, Altmann DR, Benton CE, Tozer DJ, Tofts PS, et al. Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology. 2009;253(2):505–12.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Hlaihel C, Guilloton L, Guyotat J, Streichenberger N, Honnorat J, Cotton F. Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-grade oligodendrogliomas. J Neuro-Oncol. 2010;97(1):73–80.CrossRefGoogle Scholar
- 72.Provenzale JM, Ison C, Delong D. Bidimensional measurements in brain tumors: assessment of interobserver variability. AJR Am J Roentgenol. 2009;193(6):W515–22.PubMedCrossRefGoogle Scholar
- 73.Provenzale JM, Mancini MC. Assessment of intra-observer variability in measurement of high-grade brain tumors. J Neuro-Oncol. 2012;108(3):477–83.CrossRefGoogle Scholar
- 74.Ertl-Wagner BB, Blume JD, Peck D, Udupa JK, Herman B, Levering A, et al. Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN) 6662 Trial. Eur Radiol. 2009;19(3):599–609.PubMedCrossRefPubMedCentralGoogle Scholar
- 75.van den Bent MJ, Baumert B, Erridge SC, Vogelbaum MA, Nowak AK, Sanson M, et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet. 2017;390(10103):1645–53.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Naftel RP, Pollack IF, Zuccoli G, Deutsch M, Jakacki RI. Pseudoprogression of low-grade gliomas after radiotherapy. Pediatr Blood Cancer. 2015;62(1):35–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 77.van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro-Oncology. 2017;19(5):719–25.PubMedPubMedCentralGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020