Advertisement

Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results

  • Sven-Erik EkströmEmail author
  • Stefano Serra-Capizzano
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 35)

Abstract

In this note, we focus on the spectral analysis of large matrices coming from isogeometric approximations based on B-splines of the eigenvalue problem
$$ -(a(x)u'(x))'=\lambda b(x) u(x),\quad \quad x\in (0,1), $$
where u(0) and u(1) are given. When considering the collocation case, global distribution results for the eigenvalues are available in the literature, despite the nonsymmetry of the related matrices. Here we complement such results by providing precise estimates for the extremal eigenvalues and hence for the spectral conditioning of the resulting matrices. In the Galerkin setting, the matrices are symmetric and positive definite and a more complete analysis has been conducted in the literature. In the latter case we furnish a further procedure that gives a highly accurate estimate of all the eigenvalues, starting from the knowledge of the spectral distribution symbol. The techniques involve dyadic decomposition arguments, tools from the theory of generalized locally Toeplitz sequences, and basic extrapolation methods.

References

  1. 1.
    Ahmad, F., Al-Aidarous, E.S., Abdullah Alrehaili, D., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Algorithms 78, 867–893 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aricò, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26, 186–214 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beckermann, B., Serra-Capizzano, S.: On the asymptotic spectrum of finite element matrix sequences. SIAM J. Numer. Anal. 45, 746–769 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhatia, R.: Matrix Analysis. Springer, New York (1997)CrossRefGoogle Scholar
  5. 5.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)CrossRefGoogle Scholar
  6. 6.
    Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Two-grid optimality for Galerkin linear systems based on B-splines. Comput. Vis. Sci. 17, 119–133 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Spectral analysis and spectral symbol of matrices in isogeometric collocation methods. Math. Comput. 85, 1639–1680 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis. SIAM J. Numer. Anal. 55, 31–62 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ekström, S.-E.: Matrix-less methods for computing eigenvalues of large structured matrices. Ph.D. Thesis, Uppsala University (2018)Google Scholar
  10. 10.
    Ekström, S.-E., Furci, I., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Are the eigenvalues of the B-spline isogeometric analysis approximation of \(-{\varDelta } u=\lambda u\) known in almost closed form? Numer. Linear Algebr. Appl. 25, e2151 (2018)Google Scholar
  11. 11.
    Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices. BIT Numer. Math. 58, 937–968 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ekström, S.-E., Garoni, C.: A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices. Numer. Algorithms 80(3), 819–848 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ekström, S.-E., Garoni, C., Serra-Capizzano, S.: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? Exp. Math. 27, 478–487 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Garoni, C., Manni, C., Pelosi, F., Serra-Capizzano, S., Speleers, H.: On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers, H.: Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods. Math. Comput. 86, 1343–1373 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications. Springer Monographs in Mathematics, vol. 1. Springer, Cham (2017)CrossRefGoogle Scholar
  17. 17.
    Garoni, C., Speleers, H., Ekström, S.-E., Hughes, T.J.R., Reali, A., Serra-Capizzano, S.: Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: Exposition and review. Arch. Comput. Methods Eng. (In press)  https://doi.org/10.1007/s11831-018-9295-y
  18. 18.
    Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S. (ed.) Multigrid Methods, pp. 73–130. SIAM Publications, Philadelphia (1987)CrossRefGoogle Scholar
  19. 19.
    Serra-Capizzano, S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences. Numer. Math. 92, 433–465 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Serra-Capizzano, S., Tablino-Possio, C.: Spectral and structural analysis of high precision finite difference matrices for elliptic operators. Linear Algebra Appl. 293, 85–131 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Humanities and InnovationUniversity of InsubriaVareseItaly

Personalised recommendations