How to Streamline AI Application in Government? A Case Study on Citizen Participation in Germany

  • Dian BaltaEmail author
  • Peter Kuhn
  • Mahdi Sellami
  • Daniel Kulus
  • Claudius Lieven
  • Helmut Krcmar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11685)


Artificial intelligence (AI) technologies are on the rise in almost every aspect of society, business and government. Especially in government, it is of interest how the application of AI can be streamlined: at least, in a controlled environment, in order to be able to evaluate potential (positive and negative) impact. Unfortunately, reuse in development of AI applications and their evaluation results lack interoperability and transferability. One potential remedy to this challenge would be to apply standardized artefacts: not only on a technical level, but also on an organization or semantic level. This paper presents findings from a qualitative explorative case study on online citizen participation in Germany that reveal insights on the current standardization level of AI applications. In order to provide an in-depth analysis, the research involves evaluation of two particular AI approaches to natural language processing. Our findings suggest that standardization artefacts for streamlining AI application exist predominantly on a technical level and are still limited.


Natural language processing Standardization Government 



This research was partially funded by the German Federal Ministry of Education and Research (BMBF) with the project lead partner PTKA (Projektträger Karlsruhe am Karlsruher Institut für Technologie/KIT) in the context of the project Civitas Digitalis (funding code ‘02K15A050’).

We thank our reviewers for their careful reading and their constructive remarks.


  1. 1.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)zbMATHGoogle Scholar
  2. 2.
    Minsky, M.: Steps toward artificial intelligence. Proc. IRE 49, 8–30 (1961)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Nilsson, N.J.: Principles of Artificial Intelligence. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  4. 4.
    Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Press, Boston (2018)Google Scholar
  5. 5.
    Chen, H.: AI, e-government, and politics 2.0. IEEE Intell. Syst. 24, 64–86 (2009)CrossRefGoogle Scholar
  6. 6.
    Sun, T.Q., Medaglia, R.: Mapping the challenges of Artificial Intelligence in the public sector: evidence from public healthcare. Gov. Inf. Q. 36, 368–383 (2018)CrossRefGoogle Scholar
  7. 7.
    Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. 36, 358–367 (2018)CrossRefGoogle Scholar
  8. 8.
    Tambouris, E.: Using Chatbots and Semantics to Exploit Public Sector Information. EGOV-CeDEM-ePart 2018. 125 (2018)Google Scholar
  9. 9.
    Teufl, P., Payer, U., Parycek, P.: Automated analysis of e-participation data by utilizing associative networks, spreading activation and unsupervised learning. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 139–150. Springer, Heidelberg (2009). Scholar
  10. 10.
    Maragoudakis, M., Loukis, E., Charalabidis, Y.: A review of opinion mining methods for analyzing citizens’ contributions in public policy debate. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 298–313. Springer, Heidelberg (2011). Scholar
  11. 11.
    Rao, G.K., Dey, S.: Decision support for e-governance: a text mining approach. arXiv preprint arXiv:1108.6198 (2011)
  12. 12.
    Balta, D.: Effective management of standardizing in E-government. In: Corporate Standardization Management and Innovation, pp. 149–175 (2019). Scholar
  13. 13.
    Balta, D., Krcmar, H.: Managing standardization in eGovernment: a coordination theory based analysis framework. In: Parycek, P., Glassey, O., Janssen, M., Scholl, H.J., Tambouris, E., Kalampokis, E., Virkar, S. (eds.) EGOV 2018. LNCS, vol. 11020, pp. 60–72. Springer, Cham (2018). Scholar
  14. 14.
    Sæbø, Ø., Rose, J., Flak, L.S.: The shape of eParticipation: characterizing an emerging research area. Gov. Inf. Q. 25, 400–428 (2008)CrossRefGoogle Scholar
  15. 15.
    Susha, I., Grönlund, Å.: eParticipation research: systematizing the field. Gov. Inf. Q. 29, 373–382 (2012)CrossRefGoogle Scholar
  16. 16.
    Al-Dalou, R., Abu-Shanab, E.: E-participation levels and technologies. In: The 6th International Conference on Information Technology, ICIT 2013, pp. 8–10 (2013)Google Scholar
  17. 17.
    Wimmer, M.A.: Ontology for an e-participation virtual resource centre. In: Proceedings of the 1st International Conference on Theory and Practice of Electronic Governance, pp. 89–98. ACM (2007)Google Scholar
  18. 18.
    Islam, M.S.: Towards a sustainable e-Participation implementation model. Eur. J. ePractice 5, 1–12 (2008)Google Scholar
  19. 19.
    Tambouris, E., Liotas, N., Kaliviotis, D., Tarabanis, K.: A framework for scoping eParticipation. In: Proceedings of the 8th Annual International Conference on Digital Government Research: Bridging Disciplines & Domains, pp. 288–289. Digital Government Society of North America (2007)Google Scholar
  20. 20.
    Tambouris, E., Liotas, N., Tarabanis, K.: A framework for assessing eParticipation projects and tools. In: 2007 40th Annual Hawaii International Conference on System Sciences, HICSS 2007, p. 90. IEEE (2007)Google Scholar
  21. 21.
    Youthpolicy: Participation Models: Citizens, Youth, Online. A chase through the maze (2012).
  22. 22.
    Scherer, S., Wimmer, M.A.: E-participation and enterprise architecture frameworks: an analysis. Inf. Polity 17, 147–161 (2012)CrossRefGoogle Scholar
  23. 23.
    Porwol, L., Ojo, A., Breslin, J.G.: An ontology for next generation e-Participation initiatives. Gov. Inf. Q. 33, 583–594 (2016)CrossRefGoogle Scholar
  24. 24.
    Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press, USA (2015)Google Scholar
  25. 25.
    Hagen, L., Harrison, T.M., Uzuner, Ö., Fake, T., Lamanna, D., Kotfila, C.: Introducing textual analysis tools for policy informatics: a case study of e-petitions. In: Proceedings of the 16th Annual International Conference on Digital Government Research, pp. 10–19. ACM (2015)Google Scholar
  26. 26.
    Braun, D., Hernandez-Mendez, A., Matthes, F., Langen, M.: Evaluating natural language understanding services for conversational question answering systems. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pp. 174–185 (2017)Google Scholar
  27. 27.
    Gregor, S.: The nature of theory in information systems. MIS Q. 30, 611–642 (2006)CrossRefGoogle Scholar
  28. 28.
    Goldkuhl, G.: Pragmatism vs interpretivism in qualitative information systems research. Eur. J. Inf. Syst. 21, 135–146 (2012)CrossRefGoogle Scholar
  29. 29.
    Wilde, T., Hess, T.: Forschungsmethoden der Wirtschaftsinformatik. Wirtsch. Inform. 49, 280–287 (2007). Scholar
  30. 30.
    Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: state of the art and future directions. Web Semant. Sci. Serv. Agents World Wide Web 4, 124–143 (2006)CrossRefGoogle Scholar
  31. 31.
    Berry, M.W., Castellanos, M.: Survey of text mining. Comput. Rev. 45, 548 (2004)Google Scholar
  32. 32.
    Tan, A.-H.: Text mining: the state of the art and the challenges. In: Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases, pp. 65–70. sn (1999)Google Scholar
  33. 33.
    Mirończuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 106, 36–54 (2018)CrossRefGoogle Scholar
  34. 34.
    Carpenter, B., Baldwin, B.: Text Analysis with LingPipe 4. LingPipe Inc., New York (2011)Google Scholar
  35. 35.
    Carpenter, B.: LingPipe for 99.99% recall of gene mentions. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop, pp. 307–309. BioCreative (2007)Google Scholar
  36. 36.
    Carpenter, B.: Phrasal queries with LingPipe and Lucene: ad hoc genomics text retrieval. In: TREC, pp. 1–10 (2004)Google Scholar
  37. 37.
    Alberti, C., Lee, K., Collins, M.: A BERT Baseline for the Natural Questions. arXiv preprint arXiv:1901.08634 (2019)
  38. 38.
    Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. Found. Trends® Inf. Retr. 13, 127–298 (2019)CrossRefGoogle Scholar
  39. 39.
    Hu, D.: An Introductory Survey on Attention Mechanisms in NLP Problems. arXiv preprint arXiv:1811.05544 (2018)
  40. 40.
    Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
  41. 41.
    Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., Milojicic, D.S.: Software platforms for smart cities: concepts, requirements, challenges, and a unified reference architecture. ACM Comput. Surv. (CSUR) 50, 78 (2018)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Fortiss GmbHMunichGermany
  2. 2.Behörde für Stadtentwicklung und WohnenHamburgGermany
  3. 3.Informatics 17 - Chair for Information SystemsTechnical University of MunichGarchingGermany

Personalised recommendations