Oxidative Stress Induced by Water from a Hospital Effluent of the City of Toluca, Mexico, on Hyalella azteca

  • Leobardo Manuel Gómez-OlivánEmail author
  • Hariz Islas-Flores
  • Nely San Juan-Reyes
  • Marcela Galar-Martínez
  • Sandra García-Medina
  • Armando Elizalde-Velázquez


The wide range of activities performed in hospitals (care, diagnosis, hygiene, maintenance, research) require the use of a large variety of potentially ecotoxic substances such as surfactants, disinfectants, and pharmaceuticals. Once used or excreted by a patient, these compounds combine with hospital wastewater (HWW) in stable or unstable, metabolized or non-metabolized forms and then flow directly into the municipal wastewater network, generally without any prior treatment. Also, wastewater treatment plants (WWTPs) are usually not equipped to eliminate the pollutants present in these effluents.

In Mexico there is no legislation regarding the entry of emerging contaminants into water bodies, and WWTPs do not use effective methods to remove pharmaceutical products. According to the National Water, primary treatment consists in adding chemicals in order to increase the coagulation, flocculation, and sedimentation of wastewater, followed by filtration. Hospitals in Mexico do not have wastewater treatment systems, and any pharmaceutical residues are typically released directly into the environment. Therefore, pharmaceutical concentrations are higher in water bodies located downstream from hospitals, reaching levels in the mg/L range. Micropollutant concentrations in HWW can be more than 150-fold higher than in municipal effluent. This may help explain the presence of hospital-generated pollutants in WWTPs and their effluents as well as in various components of the environment such as surface and groundwater and soil. Diverse studies have shown that pollutants present in HWW that can induce different responses in the aquatic organisms show adaptive response in contaminated aquatic environments and have been suggested for use as a bioindicators in toxicity assays.

In this chapter, the toxicity of a hospital effluent from Mexico was evaluated through oxidative stress biomarkers using Cyprinus carpio as a bioindicator species. The results showed that the main contaminants found were metals and some drugs from different therapeutic groups. The biomarkers of oxidative stress increased statistically significantly with respect to the control organisms. The results allow us to conclude that the effluents of the hospital studied are capable of generating oxidative stress, putting at risk the integrity of the organisms evaluated.


Pollutants Fish Oxidative stress Toxicity 


  1. Ansari ZA, Matondkar SGP (2014) Anthropogenic activities including pollution and contamination of coastal marine environment. J Ecophysiol Occup Health 14Google Scholar
  2. Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem 64:1046–1070CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baird R, Eaton AD, Rice EW, Bridgewater L American Public Health Association, American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. [cited 10 March 2019]. Available from
  4. Bittner L, Teixido E, Seiwert B, Escher BI, Klüver N (2018) Influence of pH on the uptake and toxicity of β-blockers in embryos of zebrafish, Danio rerio. Aquat Toxicol 201:129–137CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boillot C, Bazin C, Tissot-Guerraz F, Droguet J, Perraud M, Cetre JC, Trepo D, Perrodin Y (2008) Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Sci Total Environ 403:113–129CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buege JA, Aust SD (1978) Microsomal Lipid Peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  8. Burcham PC (2007) Modified protein carbonyl assay detects oxidised membrane proteins: a new tool for assessing drug- and chemically-induced oxidative cell injury. J Pharmacol Toxicol Methods 56:18–22CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dörr AJM, Rizzoni M (2004) Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization. Mutat Res Toxicol Environ Mutagen 557:119–129CrossRefGoogle Scholar
  10. Cardoso-Vera JD, Islas-Flores H, SanJuan-Reyes N, Montero-Castro EI, Galar-Martínez M, García-Medina S, Elizalde-Velázquez A, Dublán-García O, Gómez-Oliván LM (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cortes-Diaz MJA, Rodríguez-Flores J, Castañeda-Peñalvo G, Galar-Martínez M, Islas-Flores H, Dublán-García O, Gómez-Oliván LM (2017) Sublethal effects induced by captopril on Cyprinus carpio as determined by oxidative stress biomarkers. Sci Total Environ 605–606:811–823CrossRefPubMedPubMedCentralGoogle Scholar
  12. Decisión de Ejecución (UE) 2015/495 de la Comisión, de 20 de marzo de 2015, por la que se establece una lista de seguimiento de sustancias para el seguimiento a nivel de la Unión en el ámbito de la política del agua de conformidad con la Directiva 2008/105/CE del Parlamento Europeo y del Consejo (notificada en el documento C (2015) 1756) Texto con relevancia EEE. [cited 10 March 2019]. Available from
  13. Eaton DA, Clesceri LS, Greenberg AE (eds) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, pp 8–90Google Scholar
  14. Elia AC, Anastasi V, Dörr AJM (2006) Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere 64:1633–1641CrossRefPubMedPubMedCentralGoogle Scholar
  15. Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M, Dublán-García O, Islas-Flores H, Rodríguez-Flores J, Castañeda-Peñalvo G, Lizcano-Sanz I, Gómez-Oliván LM (2017) Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp (Cyprinus carpio): The role of amoxicilloic acid. Environ Toxicol 32:1102–1120CrossRefPubMedPubMedCentralGoogle Scholar
  16. Emmanuel E, Perrodin Y, Keck G, Blanchard J-M, Vermande P (2005) Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J Hazard Mater 117:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Vieyra-Reyes P, García-Medina S, Razo-Estrada C, Dublán-García O, Corral-Avitia AY (2012) Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on hyalella azteca. Water Air Soil Pollut 223:5097–5104CrossRefGoogle Scholar
  18. Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Valdés-Alanís A, Islas-Flores H, Neri-Cruz N (2014a) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37:391–399CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Islas-Flores H, García-Medina S (2014b) Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca. Environ Monit Assess 186:7259–7271CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gómez-Oliván LM, Mendoza-Zenil YP, SanJuan-Reyes N, Galar-Martínez M, Ramírez-Durán N, Rodríguez Martín-Doimeadios RDC, Rodríguez-Fariñas N, Islas-Flores H, Elizalde-Velázquez A, García-Medina S, Pérez-Pastén Borja R (2017) Geno- and cytotoxicity induced on Cyprinus carpio by aluminum, iron, mercury and mixture thereof. Ecotoxicol Environ Saf 135:98–105CrossRefPubMedPubMedCentralGoogle Scholar
  21. González-González ED, Gómez-Oliván LM, Galar-Martínez M, Vieyra-Reyes P, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, Razo-Estrada C, Pérez-Pastén R (2014) Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín reservoir (Mexico) induce oxidative stress in gill, blood, and muscle of common carp (Cyprinus carpio). Arch Environ Contam Toxicol 67:281–295CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gupta P, Mathur N, Bhatnagar P, Nagar P, Srivastava S (2009) Genotoxicity evaluation of hospital wastewaters. Ecotoxicol Environ Saf 72:1925–1932CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gutiérrez-Gómez AA, SanJuan-Reyes N, Galar-Martínez M, Dublán-García O, Islas-Flores H, Pérez-Alvárez I, Gómez-Oliván LM (2016) 17 β-Estradiol induced oxidative stress in gill, brain, liver, kidney and blood of common carp (Cyprinus carpio). Electron J Biol 12:53–63Google Scholar
  24. Instituto de Información e Investigación Geográfica, Estadística y Catastral del Estado de México IGECEM (2019) Centro de Colaboracio_n Geoespacial: Gobierno del Estado de Me_xico, IGECEM, INEGI (CCG) [cited 10 March 2019]. Available from
  25. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, Colín-Cruz A, Neri-Cruz N, García-Medina S (2013) Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). Ecotoxicol Environ Saf 92:32–38CrossRefPubMedPubMedCentralGoogle Scholar
  26. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Neri-Cruz N, Dublán-García O (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 21:5157–5166CrossRefGoogle Scholar
  27. Islas-Flores H, Manuel Gómez-Oliván L, Galar-Martínez M, Michelle Sánchez-Ocampo E, SanJuan-Reyes N, Ortíz-Reynoso M, Dublán-García O (2017) Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32:1637–1650CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jolibois B, Guerbet M (2005) Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat Res 565:151–162CrossRefPubMedPubMedCentralGoogle Scholar
  30. K’oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, Demeestere K (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kümmerer K (2008) Pharmaceuticals in the environment : sources, fate, effects, and risks. Springer, BerlinCrossRefGoogle Scholar
  32. Laffite A, Kilunga PI, Kayembe JM, Devarajan N, Mulaji CK, Giuliani G, Slaveykova VI, Poté J (2016) Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in Sub-Saharan Urban Rivers. Front Microbiol 7:1128CrossRefPubMedPubMedCentralGoogle Scholar
  33. Levine RL, Williams JA, Stadtman EP, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefPubMedPubMedCentralGoogle Scholar
  34. López-Serna R, Petrović M (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289CrossRefPubMedPubMedCentralGoogle Scholar
  35. Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O (2019) Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. Sci Total Environ 660:751–764CrossRefPubMedPubMedCentralGoogle Scholar
  36. Magdaleno A, Juárez AB, Dragani V, Saenz ME, Paz M, Moretton J (2014) Ecotoxicological and genotoxic evaluation of Buenos Aires city (Argentina) hospital wastewater. J Toxicol 2014:248461CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martínez-Rodríguez H, Donkor K, Brewer S, Martínez M, SanJuan-Reyes N, Islas-Flores H, Sánchez-Aceves L, Elizalde Velazquez A, Gómez-Oliván L (2018) Metoprolol induces oxidative damage in common carp (Cyprinus carpio). Aquat Toxicol 197:122CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martínez-Viveros EM, Islas-Flores H, Dublán-García O, Galar-Martínez M, SanJuan-Reyes N, García-Medina S, Hernández-Navarro MD, Gómez-Oliván LM (2018) Environmentally relevant concentrations of glibenclamide induce oxidative stress in common carp (Cyprinus carpio). Chemosphere 197:105CrossRefGoogle Scholar
  39. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedPubMedCentralGoogle Scholar
  40. Nava-Álvarez R, Razo-Estrada AC, García-Medina S, Gómez-Olivan LM, Galar-Martínez M (2014) Oxidative stress induced by mixture of diclofenac and acetaminophen on common carp (Cyprinus carpio). Water Air Soil Pollut 225Google Scholar
  41. Neri-Cruz N, Gómez-Oliván LM, Galar-Martínez M, del Socorro R-FM, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, SanJuan-Reyes N (2015) Oxidative stress in Cyprinus carpio induced by hospital wastewater in Mexico. Ecotoxicology 24:181–193CrossRefPubMedPubMedCentralGoogle Scholar
  42. NMX-AA-008-SCFI (2000) Análisis de agua - determinación del pH - Metodo de prueba. [cited 10 March 2019]. Available from Scholar
  43. NOM-001-SEMARNAT (1996) Norma oficial mexicana que establece los límites máximos permisibles de contamiantes en las descargas de aguas residuales en aguas y bienes nacionales. 1996. Procuraduría Federal de Protección al Ambiente, Diario Oficial de la Federación 30 October 1996. [cited 18 September 2018]. Available from
  44. NOM-002-SEMARNAT (1996) Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales. | SIA-BZF. [cited 10 March 2019]. Available from
  45. Novoa-Luna KA, Mendoza-Zepeda A, Natividad R, Romero R, Galar-Martínez M, Gómez-Oliván LM (2016) Biological hazard evaluation of a pharmaceutical effluent before and after a photo-Fenton treatment. Sci Total Environ 569–570:830–840CrossRefPubMedPubMedCentralGoogle Scholar
  46. Oliveira TS, Al Aukidy M, Verlicchi P (2017) Occurrence of common pollutants and pharmaceuticals in hospital effluents. Springer, Cham, pp 17–32. Scholar
  47. Olvera-Néstor CG, Morales-Avila E, Gómez-Olivan LM, Galár-Martínez M, García-Medina S, Neri-Cruz N (2016) Biomarkers of cytotoxic, genotoxic and apoptotic effects in Cyprinus carpio exposed to complex mixture of contaminants from hospital effluents. Bull Environ Contam Toxicol 96:326–332CrossRefPubMedPubMedCentralGoogle Scholar
  48. Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ 454–455:250–276CrossRefPubMedPubMedCentralGoogle Scholar
  49. Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, Islas-Flores H, García-Medina S, Galar-Martínez M, Dublán-García O, Natividad R, Gómez-Oliván LM (2018) 17Β-Estradiol induces cyto-genotoxicity on blood cells of common carp (Cyprinus carpio). Chemosphere 191:118–127CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oviedo-Gómez DGC, Galar-Martínez M, García-Medina S, Razo-Estrada C, Gómez-Oliván LM (2010) Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ Toxicol Pharmacol 29:39–43CrossRefPubMedPubMedCentralGoogle Scholar
  51. Parvez S, Raisuddin S (2005) Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol 20:112–117CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Barceló D, López De Alda M, Pérez Solsona S, Sánchez-Aceves L, SanJuan-Reyes N, Galar-Martínez M (2018) Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ Pollut 240:330–341CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perez-Coyotl I, Martinez-Vieyra C, Galar-Martinez M, Gomez-Olivan LM, Garcia-Medina S, Islas-Flores H, Perez-Pasten Borja R, Gasca-Perez E, Novoa-Luna KA, Dublan-Garcia O (2017) DNA damage and cytotoxicity induced on common carp by pollutants in water from an urban reservoir. Madin reservoir, a case study. Chemosphere 185:789–797CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pérez-Coyotl I, Martínez-Vieyra C, Galar-Martínez M, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Pérez-Pasten Borja R, Gasca-Pérez E, Novoa-Luna KA, Dublán-García O (2017) DNA damage and cytotoxicity induced on common carp by pollutants in water from an urban reservoir. Madín reservoir, a case study. Chemosphere 185:789–797CrossRefPubMedPubMedCentralGoogle Scholar
  55. Procuraduría Federal de Protección al Ambiente DO de la F 25 M 1980 (1980) NMX-AA-003, 1980. Wastewater sampling. [cited 18 September 2018]. Available from
  56. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034PubMedPubMedCentralGoogle Scholar
  57. Sanjuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M, Vieyra-Reyes P, García-Medina S, Islas-Flores H, Neri-Cruz N (2013) Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus Carpio. Water Air Soil Pollut 224Google Scholar
  58. Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316CrossRefPubMedPubMedCentralGoogle Scholar
  59. Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24:527–539CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saucedo-Vence K, Elizalde-Velázquez A, Dublán-García O, Galar-Martínez M, Islas-Flores H, SanJuan-Reyes N, García-Medina S, Hernández-Navarro MD, Gómez-Oliván LM (2017) Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). Sci Total Environ 575:347–357CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M, Förlin L (2000) Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol 48:431–442CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sun L, Xin L, Peng Z, Jin R, Jin Y, Qian H, Fu Z (2014) Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environ Toxicol 29:1367–1378CrossRefPubMedPubMedCentralGoogle Scholar
  64. Verlicchi P, Zambello E (2016) Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study. Sci Total Environ 565:82–94CrossRefPubMedPubMedCentralGoogle Scholar
  65. Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428CrossRefGoogle Scholar
  66. Vlahogianni T, Dassenakis M, Scoullos MJ, Valavanidis A (2007) Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull 54:1361–1371CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wilhelm Filho D (1996) Fish antioxidant defenses--a comparative approach. Braz J Med Biol Res 29:1735–1742PubMedPubMedCentralGoogle Scholar
  68. Zhou H, Huang J, Yuan Y, Tang B (2014) Prediction of water consumption in hospitals based on a modified Grey GM (0, 1∣sin) model of oscillation sequence: the example of Wuhan City. J Appl Math 2014:1–7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leobardo Manuel Gómez-Oliván
    • 1
    Email author
  • Hariz Islas-Flores
    • 1
  • Nely San Juan-Reyes
    • 1
  • Marcela Galar-Martínez
    • 2
  • Sandra García-Medina
    • 2
  • Armando Elizalde-Velázquez
    • 1
  1. 1.Laboratorio de Toxicología Ambiental, Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Laboratorio de Toxicología Acuática, Departamento de FarmaciaEscuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López MateosMexico CityMexico

Personalised recommendations