Impacts Caused by Manganese in the Aquatic Environments of Brazil

  • Gabriela Zimmermann Prado Rodrigues
  • Mateus Santos de Souza
  • Günther Gehlen


Aquatic contamination derived from erroneous anthropogenic practices favors the presence of metals and other contaminants in the water. Metals, especially, cause concern because of their persistence, potential for bioaccumulation in aquatic organisms, and deposition in the soil. Considering that the current potable water systems of developing countries do not completely remove these substances, it becomes an environmental and public health problem, since populations often ingest water contaminated by such substances. As manganese is one of the main and most frequent metal pollutants, some studies already seek to elucidate the damage that this substance presents to aquatic organisms. In this sense, the present study sought to compile and revise data about the occurrence and the impacts caused by this element in the aquatic environments of Brazil.


Manganese Aquatic organisms Brazil 


  1. Alcon SP, Gorojod RM, Kotler ML (2018) Regulated necrosis orchestrates microglial cell death in manganese-induced toxicity. Neuroscience 393:206–225CrossRefGoogle Scholar
  2. Alonso SG, Esteban-Hernández J, Rivera YV, Hernández-Barrera V, Miguel AG (2010) Contaminación del agua en Fuentes cercanas a campos petrolíferos de Bolivia. Rev Panam Salud Publica 28:235–243CrossRefGoogle Scholar
  3. Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MRM, Bonan CD (2017) Manganese (II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat Toxicol 182:172–183CrossRefGoogle Scholar
  4. Alvarez-Bastida C, Martínez-Miranda V, Solache-Ríos M, Linares-Hernández I, Teutli-Siqueira A, Vázquez-Mejía G (2018) Drinking water characterization and removal of manganese. Removal of manganese from water. J Environ Chem Eng 6:2119–2125CrossRefGoogle Scholar
  5. Alves RIS, Machado CS, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155CrossRefGoogle Scholar
  6. Ayandiran TA, Fawole OO, Dahunsi SO (2018) Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resources Ind 19:13–19CrossRefGoogle Scholar
  7. Bacquart T, Frisbie SH, Mitchell E, Mitchell E, Grigg L, Cole C, Small C, Sarkar B (2015) Multiple inorganic toxic substances contaminating the groundwater of Myingyan township, Myanmar: arsenic, manganese, fluoride, iron, and uranium. Sci Total Environ 517:232–245CrossRefGoogle Scholar
  8. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, Olajire AA (2018) New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: a case study of the Gulf of Guinea. Reg Stud Mar Sci 18:44–56CrossRefGoogle Scholar
  9. Bhowmik AK, Alamdar A, Katsoyiannis I, Shen H, Ali N, Ali SM, Bokhari H, Schäfer RB, Musstjab ASQ (2015) Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Sci Total Environ 538:306–3016CrossRefGoogle Scholar
  10. Bouchard MF, Surette C, Cormier P, Foucher D (2018) Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology 64:110–117CrossRefGoogle Scholar
  11. BRASIL. Conselho Nacional do Meio Ambiente – CONAMA, 2005. Resolução CONAMA no 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de efluentes, e dá outras providencias. Diário Oficial da República Federativa do Brasil, Brasilia, 18 mar. pp 58–63. Disponível em: <> Acesso em: 05/05/2018
  12. BRASIL. Ministério da Saúde – PORTARIA N° 2.914, DE 12 DE DEZEMBRO DE 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Disponível em: <> Acesso em 10/08/2018
  13. Brito IA, Garcia JRE, Salaroli AB, Figueira RCL, Martins CC, Neto AC, Gusso- Choueri PK, Choureri RB, Araujo SBL, Ribeiro CAO (2018) Embryo toxicity assay in the fish species Rhamdia quelen (Teleostei, Heptaridae) to assess water quality in the upper Iguaçu basin (Parana, Brazil). Chemosphere 208:207–218CrossRefGoogle Scholar
  14. Carvalho CF, Oulhote Y, Martorelli M, Carvalho CO, Menezes Filho JA, Argollo N, Abreu N (2018) Environmental manganese exposure and associations with memory, executive functions, and hyperactivity in Brazilian children. Neurotoxicology 69:253–259CrossRefGoogle Scholar
  15. Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153Google Scholar
  16. Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kampke EH, Chippari-Gomes AA (2018) Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). Ecotoxicology 27(8):1150–1160CrossRefGoogle Scholar
  17. Couper J (1837) On the effects of black oxide manganese when inhaled into the lungs. Brit Ann Med Pharm Vital Stat Gen Sci 1:41–42Google Scholar
  18. Farrag AEHA, Moghny TA, Mohamed AMG, Saleem SS, Fathy M (2016) Abu zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt. Appl Water Sci 6:3087–3094Google Scholar
  19. Foster ML, Rao DB, Francher T, Traver S, Dorman DC (2018) Olfactory toxicity in rats following manganese chloride nasal instillation: a pilot study. Neurotoxicology 64:284–290CrossRefGoogle Scholar
  20. Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B (2012) World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect 20:775–778CrossRefGoogle Scholar
  21. Gabriel D, Riffel APK, Finamor IA, Saccol EMH, Ourique GM, Goulart LO, Kochhann D, Cunha MA, Garcia LO, Pavanato MA, Val AL, Baldisserotto B, Llesuy SF (2013) Effects of subchronic manganese chloride exposure on Tambaqui (Colossoma macropomum) tissues: oxidative stress and antioxidant defenses. Arch Environ Contam Toxicol 64:659–667CrossRefGoogle Scholar
  22. González-Merizalde MV, Menezes-Filho JA, Cruz-Erazo CT, Bermeo-Flores SA, Saánchez-Castillo MO, Hernández-Bonilla D, Moran A (2016) Manganese and mercury levels in water, sediments, and children living near gold-mining areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch Environ Contam Toxicol 71:171–182CrossRefGoogle Scholar
  23. Gunter TE (2017) Manganese and mitochondrial function, Molecular, genetic, and nutritional aspects of major and trace minerals. Collins, J.F. Elsevier, London, 514pGoogle Scholar
  24. Guo Z, Zhang Z, Wang Q, Zhang J, Wang L, Zhang Q, Li H, Wu S (2018) Manganese chloride induces histone acetylation changes in neuronal cells: its role in manganese-induced damage. Neurotoxicology 65:255–263CrossRefGoogle Scholar
  25. Hatje V, Pedreira RMA, Rezende CE, Schettini CAF, Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:1–13CrossRefGoogle Scholar
  26. Hermes N, Schneider RCS, Molin DD, Riegel GZ, Costa AB, Corbellini VA, Torres JPM, Malm O (2013) Environmental pathways and human exposure to manganese in southern Brazil. An Acad Bras Cienc 85(4):1275–1288CrossRefGoogle Scholar
  27. HSDB (2001) Manganese compounds. National Library of Medicine, Hazardous Substances Data Bank, Bethesda. Available at
  28. Huang P, Chen C, Wang H, Li G, Jing H, Han Y, Liu N, Xiao Y, Yu Q, Liu Y, Wang P, Shi Z, Sun Z (2011) Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. Ecotoxicol Environ Saf 74:615–622CrossRefGoogle Scholar
  29. Islam MS, Ahmed MK, Habibullah-Al-Mamum M, Hoque MF (2015) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73(4):1837–1848CrossRefGoogle Scholar
  30. Kakoi B, Kaluli JW, Ndiba P, Thiong’o G (2016) Banana pith as a natural coagulant for polluted river water. Ecol Eng 95:699–705CrossRefGoogle Scholar
  31. Kassim A, Rezayi M, Ahmadzadeh S, Rounaghi G, Mohajeri M, Yusof NA, Tee TW, Heng LY, Abdullah AH (2011) A novel ion– selective polymeric membrane sensor for determining thallium (I) with high selectivity. IOP Conf Series Mater Sci Eng 17(1):1–7Google Scholar
  32. Khalid M, Aoun RA, Mathews TA (2011) Altered striatal dopamine release following a sub-acute exposure to manganese. J Neurosci Methods 15(202):182–191CrossRefGoogle Scholar
  33. Khan MYA, Gani KM, Chakrapani GJ (2017) Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of river Ganges, India. Environ Earth Sci 76:231–244Google Scholar
  34. Lebda MA, El-Neweshy MS, El-Sayed YS (2012) Neurohepatic toxicity of subacute manganese chloride exposure and potential chemoprotective effects of lycopene. Neurotoxicology 33(1):98–104CrossRefGoogle Scholar
  35. Lei K, Giubilato E, Critto A, Pan H, Lin C (2016) Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Environ Sci Pollut Res 23:13128–13136CrossRefGoogle Scholar
  36. Li Z, Guo Q, Li Z, Fan G, Xiong DB, Su Y, Zhang J, Zhang D (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/ aluminum composites with a bioinspired nanolaminated structure. Nano Lett 15:8077–8083CrossRefGoogle Scholar
  37. Liu X, Zhang L, Guan H, Zhang Z, Xu S (2013a) Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food Chem Toxicol 60:168–176CrossRefGoogle Scholar
  38. Liu X, Li Z, Tie F, Liu N, Zhang Z, Xu S (2013b) Effects of manganese-toxicity on immune-related organs of cocks. Chemosphere 90(7):2085–2100CrossRefGoogle Scholar
  39. Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J (2017) Downregulation of Mfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells. Neurochem Int 108:40–51CrossRefGoogle Scholar
  40. Lu X, Zhu Y, Bai R, Li S, Teng X (2015) The effect of manganese-induced toxicity on the cytokine mRNA expression of chicken spleen lymphocytes in vitro. Res Vet Sci 101:165–167CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lynam DR, Roos JW, Pfeifer GD, Fort BF, Pullin TG (1999) Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology 20:145–150PubMedGoogle Scholar
  42. Machado CS, Fregonesi BM, Alves RIS, Tonani KAA, Sierra J, Martinis BS, Celere BS, Mari M, Schuhmacher M, Nadal M, Domingo JL, Segura-Muñoz S (2017) Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environ Sci Pollut Res 24(25):20160–20172CrossRefGoogle Scholar
  43. Marsidi N, Hasan HA, Abdulah SRS (2018) A review of biological aerated filters for iron and manganese ions removal in water treatment. J Water Process Eng 23:1–12CrossRefGoogle Scholar
  44. Martin JAR, Arana CD, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163CrossRefGoogle Scholar
  45. McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA (2008) Postnatal manganese exposure alters dopamine transporter function in adult rats: potential impact on nonassociative and associative processes. Neuroscience 154(2):848–860CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mena I (1980) Manganese. In: Waldron HA (ed) Metals in the environment, 1st edn. Academic Press, London, pp 199–220Google Scholar
  47. Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128–136CrossRefGoogle Scholar
  48. Nascimento CA, Staggemeier R, Bianchi E, Rodrigues MT, Fabres R, Soliman MC, Bortoluzzi M, Luz RB, Heinzelmann LS, Santos EL, Fleck JD, Spilki FR (2015) Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin. Braz J Biol 75(2):50–56CrossRefGoogle Scholar
  49. O’neal SL, Lee JW, Zheng W, Canhão JR (2014) Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 44:303–313CrossRefPubMedPubMedCentralGoogle Scholar
  50. Okada MA, Neto FF, Nosso CH, Voigt CL, Campos SX, Ribeiro CAO (2016) Brain effects of manganese exposure in mice pups during prenatal and breastfeeding periods. Neurochem Int 97:109–116CrossRefGoogle Scholar
  51. Oulhote Y, Mergler D, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Suavé S, Bouchard MF (2014) Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122(12):1343–1350CrossRefPubMedPubMedCentralGoogle Scholar
  52. Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487CrossRefGoogle Scholar
  53. Quadra GR, Roland R, Barros N, Malm O, Lino AS, Azevedo GM, Thomaz JR, Andrade-Vieira LF, Praça-Fontes MM, Almeida RM, Mendonça RF, Cardoso SJ, Guida YS, Campos JMS (2019) Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil. Chemosphere 215:753–757CrossRefGoogle Scholar
  54. Rietzler AC, Fonseca AL, Lopes GP (2001) Heavy metals in tributaries of Pampulha reservoir, Minas Gerais. Braz J Biol 61(3):363–370CrossRefGoogle Scholar
  55. Rodrigues GZP, Souza MS, Silva AH, Zwetsch BG, Gehlen G (2017) Evaluation of intestinal histological damage in zebrafish exposed to environmentally relevant concentrations of manganese. Ciência e Natura 40(e52):1–8Google Scholar
  56. Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A (2018) Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 64:204–218CrossRefGoogle Scholar
  57. Silva APG, Santiago MSA, Maranho LA, Oliveira RP, Constantino DHJ, Pereira CDS, Silva CS, Perobelli JE (2018) Could male reproductive system be the main target of subchronic exposure to manganese in adult animals? Toxicology 409:1–12CrossRefGoogle Scholar
  58. Simpson SL, Spadaro DA (2016) Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: implications for deep sea exploration, mining and tailings disposal. Environ Sci Technol 50(7):4061–4070CrossRefGoogle Scholar
  59. Smith D, Woodall GM, Jarabek AM, Boyes WK (2018) Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology 64:177–184CrossRefGoogle Scholar
  60. Vieira MC, Torranteras R, Córdoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol Environ Saf 78(1):212–217CrossRefGoogle Scholar
  61. Wang Z, Ren J, Zhang G, Liu S, Zhang X, Liu Z, Zhang J (2015) Behavior of dissolved aluminum in the Huanghe (Yellow River) and its estuary: impact of human activities and sorption processes. Estuar Coast Shelf Sci 153:86–95CrossRefGoogle Scholar
  62. Winkel L, Berg M, Amini M, Hug SJ, Johnson A (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat Geosci 1:536–542CrossRefGoogle Scholar
  63. World Health Organization (1981) WHO, Manganese, IPCS, GenevaGoogle Scholar
  64. World Health Organization. WHO (2011) Guidelines for drinking-water quality, 4th edn, IPCS, GenevaGoogle Scholar
  65. Wu Q, Zhou H, Tham NFY, Tian Y, Tan Y, Zhou S, Li Q, Chen Y, Leung YS (2016) Contamination, toxicity and speciation of heavy metals in an industrialized urban river: implications for the dispersal of heavy metals. Marine Pollut Bull 104:153–161CrossRefGoogle Scholar
  66. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24CrossRefGoogle Scholar
  67. Yoon H et al (2011) Apoptosis induced by manganese on neuronal SK-N-MC cell line: endoplasmic reticulum (ER) stress and mitochondria dysfunction. Environ Health Toxicol 26:1–7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gabriela Zimmermann Prado Rodrigues
    • 1
  • Mateus Santos de Souza
    • 1
  • Günther Gehlen
    • 2
  1. 1.Laboratório de Histologia comparadaUniversidade FeevaleNovo HamburgoBrazil
  2. 2.Programa de Pós-graduação em Qualidade AmbientalUniversidade FeevaleNovo HamburgoBrazil

Personalised recommendations